Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry Molecular Biology
Research subject
Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-145624OAI: oai:DiVA.org:su-145624DiVA, id: diva2:1131260
Available from: 2017-08-14 Created: 2017-08-14 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Nucleolar Ribosome Assembly
Open this publication in new window or tab >>Nucleolar Ribosome Assembly
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ribosomes are macromolecular machines that are responsible for production of every protein in a living cell. Yet we do not know the details about how these machines are formed. The ribosome consists of four RNA strands and roughly 80 proteins that associate with each other in the nucleolus and form pre-ribosomal complexes. Eukaryotes, in contrast to prokaryotes, need more than 200 non-ribosomal factors to assemble ribosomes. These associate with pre-ribosomal complexes at different stages as they travel from the nucleolus to the cytoplasm and are required for pre-rRNA processing. We do however lack knowledge about the molecular function of most of these factors and what enables pre-rRNA processing. Especially, information is missing about how non-ribosomal factors influence folding of the pre-rRNA and to what extent the pre-ribosomal complexes are restructured during their maturation. 

This thesis aims to obtain a better understanding of the earliest events of ribosome assembly, namely those that take place in the nucleolus. This has been achieved by studying the essential protein Mrd1 by mutational analysis in the yeast Saccharomyces cerevisiae as well as by obtaining structural information of nucleolar pre-ribosomal complexes. Mrd1 has a modular structure consisting of multiple RNA binding domains (RBDs) that we find is conserved throughout eukarya. We show that an evolutionary conserved linker region of Mrd1 is crucial for function of the protein and likely forms an essential module together with adjacent RBDs. By obtaining structural information of pre-ribosomal complexes at different stages, we elucidate what structuring events occur in the nucleolus.  We uncover a direct role of Mrd1 in structuring the pre-rRNA in early pre-ribosomal complexes, which provides an explanation for why pre-rRNA cannot be processed in Mrd1 mutants.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular BiosciDepartment of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2017. p. 70
Keywords
Ribosome biogenesis, RNA, Nucleolus
National Category
Biochemistry Molecular Biology
Research subject
Molecular Biology
Identifiers
urn:nbn:se:su:diva-145639 (URN)978-91-7649-921-4 (ISBN)978-91-7649-922-1 (ISBN)
Public defence
2017-09-20, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2017-08-28 Created: 2017-08-14 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Lackmann, Fredrik

Search in DiVA

By author/editor
Lackmann, Fredrik
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf