Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Cross-Validation of FDG- and Amyloid-PET Biomarkers in Mild Cognitive Impairment for the Risk Prediction to Dementia due to Alzheimer's Disease in a Clinical Setting
Stockholm University, Faculty of Social Sciences, Department of Psychology. Karolinska Institutet, Sweden; Karolinska University Hospital Huddinge, Sweden.
Show others and affiliations
Number of Authors: 10
2017 (English)In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 59, no 2, 603-614 p.Article in journal (Refereed) Published
Abstract [en]

Assessments of brain glucose metabolism (F-18-FDG-PET) and cerebral amyloid burden (C-11-PiB-PET) in mild cognitive impairment (MCI) have shown highly variable performances when adopted to predict progression to dementia due to Alzheimer's disease (ADD). This study investigates, in a clinical setting, the separate and combined values of F-18-FDGPET and C-11-PiB-PET in ADD conversion prediction with optimized data analysis procedures. Respectively, we investigate the accuracy of an optimized SPM analysis for F-18-FDG-PET and of standardized uptake value ratio semiquantification for C-11-PiB-PET in predicting ADD conversion in 30 MCI subjects (age 63.57 +/- 7.78 years). Fourteen subjects converted to ADD during the follow-up (median 26.5 months, inter-quartile range 30 months). Receiver operating characteristic analyses showed an area under the curve (AUC) of 0.89 and of 0.81 for, respectively, F-18-FDG-PET and C-11-PiB-PET. F-18-FDG-PET, compared to C-11-PiB-PET, showed higher specificity (1.00 versus 0.62, respectively), but lower sensitivity (0.79 versus 1.00). Combining the biomarkers improved classification accuracy (AUC = 0.96). During the follow-up time, all the MCI subjects positive for both PET biomarkers converted to ADD, whereas all the subjects negative for both remained stable. The difference in survival distributions was confirmed by a log-rank test (p = 0.002). These results indicate a very high accuracy in predicting MCI to ADD conversion of both F-18-FDG-PET and C-11-PiB-PET imaging, the former showing optimal performance based on the SPM optimized parametric assessment. Measures of brain glucose metabolism and amyloid load represent extremely powerful diagnostic and prognostic biomarkers with complementary roles in prodromal dementia phase, particularly when tailored to individual cases in clinical settings.

Place, publisher, year, edition, pages
2017. Vol. 59, no 2, 603-614 p.
Keyword [en]
Alzheimer's disease, C-11-PiB-PET, conversion prediction, dementia, early diagnosis, F-18-FDG-PET, mild cognitive impairment, prognosis
National Category
Neurology Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:su:diva-146026DOI: 10.3233/JAD-170158ISI: 000405805400019OAI: oai:DiVA.org:su-146026DiVA: diva2:1134911
Available from: 2017-08-21 Created: 2017-08-21 Last updated: 2017-08-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Almkvist, Ove
By organisation
Department of Psychology
In the same journal
Journal of Alzheimer's Disease
NeurologyPharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf