Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Controllable synthesis of LiFePO4 in different polymorphs and study of the reaction mechanism
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Peking University, People's Republic of China. .
Show others and affiliations
Number of Authors: 6
2017 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 27, 14294-14300 p.Article in journal (Refereed) Published
Abstract [en]

Lithium iron phosphate, a widely used cathode material in Lithium Ion Batteries (LIBs), crystallizes typically in an olivine-type phase, alpha-LiFePO4 (aLFP). However, the new phase beta-LiFePO4 (bLFP), which can be transformed from aLFP at high temperature with high pressure, can be produced through a simple liquid-phase reaction. The mechanism of controllable synthesis of the two polymorphs of lithium iron phosphate has not been studied thoroughly. In this paper, with thorough experiments, we demonstrate that controllable synthesis of LFP with different crystal polymorphs can be obtained by controlling certain conditions. The phosphoric acid ratio in the reactants and the reaction time play key roles in the controllable syntheses. Higher phosphoric acid ratios and shorter reaction times would result in a higher bLFP content, while a lower amount of phosphoric acid and a longer reaction time would be beneficial to aLFP formation. To illustrate the mechanism for this phenomenon, the detailed reaction process was researched via X-ray diffraction, from which a possible mechanism associated with the evolution of crystal structures was demonstrated. The solvent content is also important for the process: some water content would lead to nanoplate-shaped aLFP particles appearing. Their influence on the reaction could be attributed to the change of thermodynamics and kinetics, which leads to different crystal nucleation, growth and phase-change processes.

Place, publisher, year, edition, pages
2017. Vol. 5, no 27, 14294-14300 p.
National Category
Materials Chemistry Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:su:diva-145890DOI: 10.1039/c7ta03369aISI: 000405190000041OAI: oai:DiVA.org:su-145890DiVA: diva2:1134998
Available from: 2017-08-22 Created: 2017-08-22 Last updated: 2017-08-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Guo, Hua
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry A
Materials ChemistryMetallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf