Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Step-wise drops in modularity and the fragmentation of exploited marine metapopulations
Stockholm University, Faculty of Science, Stockholm Resilience Centre.
Number of Authors: 4
2017 (English)In: Landscape Ecology, ISSN 0921-2973, E-ISSN 1572-9761, Vol. 32, no 8, 1643-1656 p.Article in journal (Refereed) Published
Abstract [en]

Context

Many nearshore species are distributed in habitat patches connected only through larval dispersal. Genetic research has shown some spatial structure of such metapopulations and modeling studies have shed light onto possible patterns of connectivity and barriers. However, little is known about human impact on their spatial structure and patterns of connectivity.

Objectives

We examine the effects of fishing on the spatial and temporal dynamics of metapopulations of sedentary marine species (red sea urchin and red abalone) interconnected by larval dispersal.

Methods

We constructed a metapopulation model to simulate abalone and sea urchin metapopulations experiencing increasing levels of fishing mortality. We performed the modularity analysis on the yearly larval connectivity matrices produced by these simulations, and analyzed the changes of modularity and the formation of modules over time as indicators of spatial structure.

Results

The analysis revealed a strong modular spatial structure for abalone and a weak spatial signature for sea urchin. In abalone, under exploitation, modularity takes step-wise drops on the path to extinction, and modules breakdown into smaller fragments followed by module and later metapopulation collapse. In contrast, sea urchin showed high modularity variation, indicating high- and low-mixing years, but an abrupt collapse of the metapopulation under strong exploitation.

Conclusions

The results identify a disruption in larval connectivity and a pattern of collapse in highly modular nearshore metapopulations. These results highlight the ability of modularity to detect spatial structure in marine metapopulations, which varies among species, and to show early changes in the spatial structure of exploited metapopulations.

Place, publisher, year, edition, pages
2017. Vol. 32, no 8, 1643-1656 p.
Keyword [en]
Larval connectivity, Southern California Bight, Allee effect, Marine metapopulation, Seascape ecology, Spatial structure, Red abalone, Red sea urchin
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-145867DOI: 10.1007/s10980-017-0532-9ISI: 000405326500009OAI: oai:DiVA.org:su-145867DiVA: diva2:1135407
Available from: 2017-08-23 Created: 2017-08-23 Last updated: 2017-08-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Watson, James R.
By organisation
Stockholm Resilience Centre
In the same journal
Landscape Ecology
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf