CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt174",{id:"formSmash:upper:j_idt174",widgetVar:"widget_formSmash_upper_j_idt174",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt175_j_idt178",{id:"formSmash:upper:j_idt175:j_idt178",widgetVar:"widget_formSmash_upper_j_idt175_j_idt178",target:"formSmash:upper:j_idt175:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A Tropical Analog of Descartes' Rule of SignsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
Number of Authors: 32017 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, no 12, p. 3726-3750Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2017. no 12, p. 3726-3750
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-146006DOI: 10.1093/imrn/rnw118ISI: 000405611600006OAI: oai:DiVA.org:su-146006DiVA, id: diva2:1136176
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt514",{id:"formSmash:j_idt514",widgetVar:"widget_formSmash_j_idt514",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt521",{id:"formSmash:j_idt521",widgetVar:"widget_formSmash_j_idt521",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true}); Available from: 2017-08-25 Created: 2017-08-25 Last updated: 2017-08-25Bibliographically approved

We prove that for any degree d, there exist (families of) finite sequences {lambda(k,d)} 0 <= k <= d of positive numbers such that, for any real polynomial P of degree d, the number of its real roots is less than or equal to the number of the so-called essential tropical roots of the polynomial obtained from P by multiplication of its coefficients by lambda(0,d),lambda(1,d),..,lambda(d,d), respectively. In particular, for any real univariate polynomial P(x) of degree d with a non-vanishing constant term, we conjecture that one can take lambda(k,d) = e-k(2), k = 0,...,d. The latter claim can be thought of as a tropical generalization of Descartes's rule of signs. We settle this conjecture up to degree 4 as well as a weaker statement for arbitrary real polynomials. Additionally, we describe an application of the latter conjecture to the classical Karlin problem on zero-diminishing sequences.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1316",{id:"formSmash:j_idt1316",widgetVar:"widget_formSmash_j_idt1316",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1401",{id:"formSmash:lower:j_idt1401",widgetVar:"widget_formSmash_lower_j_idt1401",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1402_j_idt1404",{id:"formSmash:lower:j_idt1402:j_idt1404",widgetVar:"widget_formSmash_lower_j_idt1402_j_idt1404",target:"formSmash:lower:j_idt1402:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});