Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A dual-layer macro/mesoporous structured TiO2 surface improves the initial adhesion of osteoblast-like cells
Show others and affiliations
Number of Authors: 102017 (English)In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 78, p. 443-451Article in journal (Refereed) Published
Abstract [en]

A dual-layer TiO2 surface with hierarchical macro and mesoporous structure was prepared by a combinational approach of micro-arc oxidation followed by evaporation-induced self-assembly of nano-crystallites. The mesoporous layer contains pores with an average size of <10 nm and consists of anatase TiO2 nanocrystallites. The dual-layer hierarchical macro/mesoporous structured TiO2 surface improves the hydrophilicity and fibronectin adsorption ability in comparison with the sole macroporous or smooth TiO2 surface. With the formation of an additional mesoporous layer on macroporous TiO2 surface, the attached number of human osteogenic sarcoma cells (SaOS-2) increases in the initial incubation of 4 h but it does not show significant difference after 24 h compared to that attached on the macroporous or smooth surfaces. Whereas, it was noticed that SaOS-2 cells have larger spread area and more stress fibers on the macro/mesoporous structured surface than those on the other surfaces. To understand the intracellular mechanism of the initial cell adhesion on the macro/mesoporous surface, the Rho/ROCK pathway was investigated to reveal the topography-induced biological functions by introducing the ROCK inhibitor Y-27632 during cell culture. In the presence of Y-27632, cells on the macroporous surface and macro/mesoporous surface both show stellate appearance, with poor assembly stress fibers and long cell membrane protrusions. Cells on the smooth surface have larger spread areas compared to the former two surfaces. And the attached cells significantly reduced but there are no differences among the three surfaces. It reveals that the ROCK inhibitor invalidates the promotion of initial cell adhesion on the macro/mesoporous structure. This study may shed light on the mechanism behind the enhancement effect of macro/mesoporous structure for initial cell adhesion.

Place, publisher, year, edition, pages
2017. Vol. 78, p. 443-451
Keywords [en]
Titanium, Macro/mesoporous TiO2, Cell adhesion, RhoA/ROCK
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:su:diva-145961DOI: 10.1016/j.msec.2017.04.082ISI: 000404944700052OAI: oai:DiVA.org:su-145961DiVA, id: diva2:1141800
Available from: 2017-09-15 Created: 2017-09-15 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Shen, Zhijian

Search in DiVA

By author/editor
Shen, Zhijian
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Materials science & engineering. C, biomimetic materials, sensors and systems
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf