Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On some weakly coercive quasilinear problems with forcing
Stockholm University, Faculty of Science, Department of Mathematics.
2020 (English)In: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538, Vol. 140, no 1, p. 267-281Article in journal (Refereed) Published
Abstract [en]

We consider the forced problem −ΔpuV(x)∣up−2u = f(x), where Δp is the p-Laplacian (1 < p < ∞) in a domain Ω ⊂ ℝN, V ≥ 0 and QV(u)≔ ∫Ω ∣∇updx − ∫ΩV∣u∣pdx satisfies the condition (A) below. We show that this problem has a solution for all f in a suitable space of distributions. Then we apply this result to some classes of functions V which in particular include the Hardy potential (1.5) and the potential V(x)= λ1,p(Ω), where λ1,p(Ω) is the Poincaré constant on an infinite strip.

Place, publisher, year, edition, pages
2020. Vol. 140, no 1, p. 267-281
Keywords [en]
Forced problem, Hardy potential, p-Laplacian, Poincaré constant, weakly coercive
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-146985DOI: 10.1007/s11854-020-0088-5ISI: 000521792200004OAI: oai:DiVA.org:su-146985DiVA, id: diva2:1142045
Available from: 2017-09-18 Created: 2017-09-18 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textarXiv:1709.05187

Authority records

Szulkin, Andrzej

Search in DiVA

By author/editor
Szulkin, Andrzej
By organisation
Department of Mathematics
In the same journal
Journal d'Analyse Mathematique
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf