Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computational Elucidation of a Role That Bronsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H-2 in Lewis Basic Solvents
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Number of Authors: 2
2017 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 48, 11489-11493 p.Article in journal (Refereed) Published
Abstract [en]

Bronsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Bronsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H-2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe2) is the archetypical carbonyl substrate. We demonstrate that Bronsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H-2-cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study.

Place, publisher, year, edition, pages
2017. Vol. 23, no 48, 11489-11493 p.
Keyword [en]
Bronsted acidification, heterolytic cleavage of H-2, hydrogenation of carbonyl compounds, Lewis acid, Lewis base, reaction mechanisms
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-146993DOI: 10.1002/chem.201700937ISI: 000408308200006PubMedID: 28677868OAI: oai:DiVA.org:su-146993DiVA: diva2:1142078
Available from: 2017-09-18 Created: 2017-09-18 Last updated: 2017-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Heshmat, MojganPrivalov, Timofei
By organisation
Department of Organic Chemistry
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf