Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 2
2017 (English)In: Climate of the Past, ISSN 1814-9324, E-ISSN 1814-9332, Vol. 13, no 8, 1037-1048 p.Article in journal (Refereed) Published
Abstract [en]

Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario). The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has similar to 11% greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Nino-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

Place, publisher, year, edition, pages
2017. Vol. 13, no 8, 1037-1048 p.
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-147078DOI: 10.5194/cp-13-1037-2017ISI: 000407957000001OAI: oai:DiVA.org:su-147078DiVA: diva2:1142138
Available from: 2017-09-18 Created: 2017-09-18 Last updated: 2017-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Carlson, Henrik
By organisation
Department of Meteorology
In the same journal
Climate of the Past
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf