Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Classification and asymptotic structure of black holes in bimetric theory
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Number of Authors: 3
2017 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 6, 064003Article in journal (Refereed) Published
Abstract [en]

We study general properties of static and spherically symmetric bidiagonal black holes in Hassan-Rosen bimetric theory by means of a new method. In particular, we explore the behavior of the black hole solutions both at the common Killing horizon and at the large radii. The former study was never done before and leads to a new classification for black holes within the bidiagonal ansatz. The latter study shows that, among the great variety of the black hole solutions, the only solutions converging to Minkowski, anti-de Sitter, and de Sitter spacetimes at large radii are those of general relativity, i.e., the Schwarzschild, Schwarzschild-anti-de Sitter and Schwarzschild-de Sitter solutions. Moreover, we present a proposition, whose validity is not limited to black hole solutions, which establishes the relation between the curvature singularities of the two metrics and the invertibility of their interaction potential.

Place, publisher, year, edition, pages
2017. Vol. 96, no 6, 064003
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-146970DOI: 10.1103/PhysRevD.96.064003ISI: 000409259700003OAI: oai:DiVA.org:su-146970DiVA: diva2:1142346
Available from: 2017-09-19 Created: 2017-09-19 Last updated: 2017-11-29Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Torsello, FrancescoKocic, MikicaMörtsell, Edvard
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf