Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Planning Flexible Maintenance for Heavy Trucks using Machine Learning Models, Constraint Programming, and Route Optimization
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Number of Authors: 22017 (English)In: SAE International Journal of Materials & Manufacturing, ISSN 1946-3979, E-ISSN 1946-3987, Vol. 10, no 3, p. 306-315Article in journal (Refereed) Published
Abstract [en]

Maintenance planning of trucks at Scania have previously been done using static cyclic plans with fixed sets of maintenance tasks, determined by mileage, calendar time, and some data driven physical models. Flexible maintenance have improved the maintenance program with the addition of general data driven expert rules and the ability to move sub-sets of maintenance tasks between maintenance occasions. Meanwhile, successful modelling with machine learning on big data, automatic planning using constraint programming, and route optimization are hinting on the ability to achieve even higher fleet utilization by further improvements of the flexible maintenance. The maintenance program have therefore been partitioned into its smallest parts and formulated as individual constraint rules. The overall goal is to maximize the utilization of a fleet, i.e. maximize the ability to perform transport assignments, with respect to maintenance. A sub-goal is to minimize costs for vehicle break downs and the costs for maintenance actions. The maintenance planner takes as input customer preferences and maintenance task deadlines where the existing expert rule for the component has been replaced by a predictive model. Using machine learning, operational data have been used to train a predictive random forest model that can estimate the probability that a vehicle will have a breakdown given its operational data as input. The route optimization takes predicted vehicle health into consideration when optimizing routes and assignment allocations. The random forest model satisfactory predicts failures, the maintenance planner successfully computes consistent and good maintenance plans, and the route optimizer give optimal routes within tens of seconds of operation time. The model, the maintenance planner, and the route optimizer have been integrated into a demonstrator able to highlight the usability and feasibility of the suggested approach.

Place, publisher, year, edition, pages
2017. Vol. 10, no 3, p. 306-315
National Category
Civil Engineering Computer Systems
Identifiers
URN: urn:nbn:se:su:diva-147172DOI: 10.4271/2017-01-0237ISI: 000408313500006OAI: oai:DiVA.org:su-147172DiVA, id: diva2:1143369
Available from: 2017-09-21 Created: 2017-09-21 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Lindgren, Tony

Search in DiVA

By author/editor
Lindgren, Tony
By organisation
Department of Computer and Systems Sciences
In the same journal
SAE International Journal of Materials & Manufacturing
Civil EngineeringComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 348 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf