Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Isothiocyanates are important as haptens in contact allergy to chloroprene rubber
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 6
2017 (English)In: British Journal of Dermatology, ISSN 0007-0963, E-ISSN 1365-2133, Vol. 177, no 2, 522-530 p.Article in journal (Refereed) Published
Abstract [en]

Background Contact allergy to chloroprene rubber products is well known. Thiourea compounds are considered the cause of allergy. Diethylthiourea commonly occurs in this type of product and can decompose to the sensitizer ethyl isothiocyanate. Objectives To investigate the clinical importance of degradation products and metabolites from organic thioureas in contact allergy to chloroprene rubber with a focus on isothiocyanates and isocyanates. Methods Patients with contact allergy to diphenylthiourea were patch tested with phenyl isothiocyanate and phenyl isocyanate. Patients with known contact allergy to diethylthiourea were retested with diethylthiourea, while chemical analyses of their chloroprene rubber products were performed. The stability of diethylthiourea, diphenylthiourea and dibutylthiourea in patch-test preparations was investigated. Liquid chromatography/mass spectrometry and solid-phase microextraction/gas chromatography were used for determination of organic thioureas and isothiocyanates. Results All patients allergic to diphenylthiourea reacted to phenyl isothiocyanate, two of eight reacted to phenyl isocyanate and six of eight reacted to diphenylthiourea. Four patients allergic to diethylthiourea reacted at retest; diethylthiourea was detected in all chloroprene rubber samples, with levels of 2-1200 nmol cm(-2). At 35 degrees C, ethyl isothiocyanate was emitted from all samples. Patch-test preparations of diethylthiourea, diphenylthiourea and dibutylthiourea all emitted the corresponding isothiocyanate, with diethylthiourea showing the highest rate of isothiocyanate emission. Conclusions Thiourea compounds are degraded to isothiocyanates, which are generally strong or extreme sensitizers, thus acting as prehaptens. This process occurs in both chloroprene rubber products and patch-test preparations. Positive reactions to phenyl isocyanate indicate cutaneous metabolism, as the only known source of exposure to phenyl isocyanate is through bioactivation of diphenylthiourea.

Place, publisher, year, edition, pages
2017. Vol. 177, no 2, 522-530 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-147115DOI: 10.1111/bjd.15444ISI: 000407994100038PubMedID: 28295200OAI: oai:DiVA.org:su-147115DiVA: diva2:1147888
Available from: 2017-10-09 Created: 2017-10-09 Last updated: 2017-10-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Nilsson, Ulrika
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
British Journal of Dermatology
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf