Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scandium and Yttrium Environments in Aluminosilicate Glasses Unveiled by Sc-45/Y-89 NMR Spectroscopy and DFT Calculations: What Structural Factors Dictate the Chemical Shifts?
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-7156-559X
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0001-7109-5068
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0001-9409-2601
Number of Authors: 42017 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 34, p. 18815-18829Article in journal (Refereed) Published
Abstract [en]

Aluminosilicate (AS) glasses incorporating rare-earth (RE) elements exhibit favorable mechanical and (magneto)optical properties that reflect their unusual structural Organization. Yet, experimental reports on the local RE3+ environments in AS glasses are very sparse. We examine the Y3+ and Sc3+ cations in Y2O3-Al2O3-SiO2 and Sc2O3-Al2O3-SiO2 glasses of variable RE/Al/Si contents by utilizing magic-angle spinning (MAS) Y-89 and Sc-45 nuclear magnetic resonance (NMR) experiments coupled with density functional theory (DFT) calculations of Y-89/Sc-45 NMR chemical shifts. The DFT models reveal {Y-[p]} and {Sc-[p]} coordination numbers (p) spanning 5 <= p <= 8 and 4 <= p <= 7, respectively; with {Y-[6], Y-[7] and {Sc-[5], Sc-[6]} species dominating. Wide isotropic chemical shift ranges of 35-354 ppm (Y-89) and'48-208 ppm (Sc-45) are observed, as well as sizable shift'anisotropies up to approximate to 370 ppm and approximate to 250 ppm for Y-89 and Sc-45, respectively. Both the isotropic and anisotropic chemical shifts grow when the coordination number p is decreased for Y-89([p]) as well as Sc-45([p]). Second to the coordination number, we demonstrate that the Y-89/Sc-45 isotropic chemical shifts are mainly influenced by the RE/Al/Si constellation in the second coordination sphere of Y and Sc; where the shift tends to increase for emphasized contacts with neighboring RE and Al species at the expense of Si. These DFT-derived trends are corroborated by a progressive 89Y deshielding observed in MAS Y-89 NMR spectra for increasing Y and/or Al content of the glass. We also introduce heteronuclear MAS NMR experimentation involving the pairs of Y-89-Al-27 and Sc-45-Si-29 nuclides, utilized for probing the contacts between the Y3+/Sc3+ cations and the AS glass-network forming groups.

Place, publisher, year, edition, pages
2017. Vol. 121, no 34, p. 18815-18829
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-147900DOI: 10.1021/acs.jpcc.7b05471ISI: 000409395700055OAI: oai:DiVA.org:su-147900DiVA, id: diva2:1150678
Available from: 2017-10-19 Created: 2017-10-19 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Jaworski, AleksanderCharpentier, ThibaultStevensson, BaltzarEdén, Mattias

Search in DiVA

By author/editor
Jaworski, AleksanderCharpentier, ThibaultStevensson, BaltzarEdén, Mattias
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf