Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-linear conversion of HX4 uptake for automatic segmentation of hypoxic volumes and dose prescription
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-1099-733X
Stockholm University, Faculty of Science, Department of Physics.
The Skandion Clinic, Sweden.ORCID iD: 0000-0001-8171-2541
RaySearch Laboratories AB, Sweden.
Show others and affiliations
2018 (English)In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 57, no 4, p. 485-490Article in journal (Other academic) Published
Abstract [en]

Background: Tumour hypoxia is associated with increased radioresistance and poor response to radiotherapy. Pre-treatment assessment of tumour oxygenation could therefore give the possibility to tailor the treatment by calculating the required boost dose needed to overcome the increased radioresistance in hypoxic tumours. This study concerned the derivation of a non-linear conversion function between the uptake of the hypoxia-PET tracer 18F-HX4 and oxygen partial pressure (pO2).

Material and methods: Building on previous experience with FMISO including experimental data on tracer uptake and pO2, tracer-specific model parameters were derived for converting the normalised HX4-uptake at the optimal imaging time point to pO2. The conversion function was implemented in a Python-based computational platform utilising the scripting and the registration modules of the treatment planning system RayStation. Subsequently, the conversion function was applied to determine the pO2 in eight non-small-cell lung cancer (NSCLC) patients imaged with HX4-PET before the start of radiotherapy. Automatic segmentation of hypoxic target volumes (HTVs) was then performed using thresholds around 10 mmHg. The HTVs were compared to sub-volumes segmented based on a tumour-to-blood ratio (TBR) of 1.4 using the aortic arch as the reference oxygenated region. The boost dose required to achieve 95% local control was then calculated based on the calibrated levels of hypoxia, assuming inter-fraction reoxygenation due to changes in acute hypoxia but no overall improvement of the oxygenation status.

Results: Using the developed conversion tool, HTVs could be obtained using pO2 a threshold of 10 mmHg which were in agreement with the TBR segmentation. The dose levels required to the HTVs to achieve local control were feasible, being around 70–80 Gy in 24 fractions.

Conclusions: Non-linear conversion of tracer uptake to pO2 in NSCLC imaged with HX4-PET allows a quantitative determination of the dose-boost needed to achieve a high probability of local control.

Place, publisher, year, edition, pages
2018. Vol. 57, no 4, p. 485-490
National Category
Physical Sciences
Research subject
Medical Radiation Physics
Identifiers
URN: urn:nbn:se:su:diva-148300DOI: 10.1080/0284186X.2017.1400177ISI: 000427934300007PubMedID: 29141489Scopus ID: 2-s2.0-85034218678OAI: oai:DiVA.org:su-148300DiVA, id: diva2:1151128
Available from: 2017-10-22 Created: 2017-10-22 Last updated: 2022-10-25Bibliographically approved
In thesis
1. Time, dose and fractionation: accounting for hypoxia in the search for optimal radiotherapy treatment parameters
Open this publication in new window or tab >>Time, dose and fractionation: accounting for hypoxia in the search for optimal radiotherapy treatment parameters
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The search for the optimal choice of treatment time, dose and fractionation regimen is one of the major challenges in radiation therapy. Several aspects of the radiation response of tumours and normal tissues give different indications of how the parameters defining a fractionation schedule should be altered relative to each other which often results in contradictory conclusions. For example, the increased sensitivity to fractionation in late-reacting as opposed to early-reacting tissues indicates that a large number of fractions is beneficial, while the issue of accelerated repopulation of tumour cells starting at about three weeks into a radiotherapy treatment would suggest as short overall treatment time as possible. Another tumour-to-normal tissue differential relevant to the sensitivity as well as the fractionation and overall treatment time is the issue of tumour hypoxia and reoxygenation.

The tumour oxygenation is one of the most influential factors impacting on the outcome of many types of treatment modalities. Hypoxic cells are up to three times as resistant to radiation as well-oxygenated cells, presenting a significant obstacle to overcome in radiotherapy as solid tumours often contain hypoxic areas as a result of their poorly functioning vasculature. Furthermore, the oxygenation is highly dynamic, with changes being observed both from fraction to  fraction and over a time period of weeks as a result of fast and slow reoxygenation of acute and chronic hypoxia. With an increasing number of patients treated with hypofractionated stereotactic body radiotherapy (SBRT), the clinical implications of a substantially reduced number of fractions and hence also treatment time thus have to be evaluated with respect to the oxygenation status of the tumour.

One of the most promising tools available for the type of study aiming at determining the optimal radiotherapy approach with respect to fractionation is radiobiological modelling. With clinically validated in vitro-derived tissue-specific radiobiological parameters and well-established survival models, in silico modelling offers a wide range of opportunities to test various hypotheses with respect to time, dose, fractionation and details of the tumour microenvironment. Any type of radiobiological modelling study intended to provide a realistic representation of a clinical tumour should therefore take into account details of both the spatial and temporal tumour oxygenation.

This thesis presents the results of three-dimensional radiobiological modelling of the response of tumours with heterogeneous oxygenation to various fractionation schemes, and oxygenation levels and dynamics using different survival models. The results of this work indicate that hypoxia and its dynamics play a major role in the outcome of radiotherapy, and that neglecting the oxygenation status of tumours treated with e.g. SBRT may compromise the treatment outcome substantially. Furthermore, the possibilities offered by incorporating modelling into the clinical routine are explored and demonstrated by the development of a new calibration function for converting the uptake of the hypoxia-PET tracer 18F-HX4 to oxygen partial pressure, and applying it for calculations of the doses needed to overcome hypoxia-induced radiation resistance. By hence demonstrating how the clinical impact of hypoxia on dose prescription and the choice of fractionation schedule can be investigated, this project will hopefully advance the evolution towards routinely incorporating functional imaging of hypoxia into treatment planning. This is ultimately expected to result in increased levels of local control with more patients being cured from their cancer.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2017. p. 54
Keywords
Hypoxia, radiobiological modelling, radiotherapy, functional imaging
National Category
Physical Sciences
Research subject
Medical Radiation Physics
Identifiers
urn:nbn:se:su:diva-148301 (URN)978-91-7797-031-6 (ISBN)978-91-7797-032-3 (ISBN)
Public defence
2017-12-05, CCK lecture hall, building R8, Karolinska University Hospital Solna, Solna, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 6: Manuscript.

Available from: 2017-11-10 Created: 2017-10-22 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Ureba, AnaLindblom, EmelyDasu, AlexandruToma-Dasu, Iuliana

Search in DiVA

By author/editor
Ureba, AnaLindblom, EmelyDasu, AlexandruToma-Dasu, Iuliana
By organisation
Department of Physics
In the same journal
Acta Oncologica
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf