Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nuclear targeting of Hsp110 modifies the proteostasis system by mobilizing latent Hsp70 chaperones
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.ORCID iD: 0000-0001-8948-0685
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry Molecular Biology Cell Biology
Research subject
Molecular Bioscience
Identifiers
URN: urn:nbn:se:su:diva-148368OAI: oai:DiVA.org:su-148368DiVA, id: diva2:1151410
Available from: 2017-10-23 Created: 2017-10-23 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Regulation of cellular Hsp70: Proteostasis and aggregate management
Open this publication in new window or tab >>Regulation of cellular Hsp70: Proteostasis and aggregate management
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins have to be folded to their native structures to be functionally expressed. Misfolded proteins are proteotoxic and negatively impact on cellular fitness. To maintain the proteome functional proteins are under the constant surveillance of dedicated molecular chaperones that perform protein quality control (PQC). Using the model organism yeast Saccharomyces cerevisiae this thesis investigates the molecular mechanisms that cells employ to maintain protein homeostasis (proteostasis). In Study I the role of the molecular chaperone Hsp110 in the disentanglement and reactivation of aggregated proteins was investigated. We found that Hsp110 is essential for cellular protein disaggregation driven by the molecular chaperones Hsp40, Hsp70 and Hsp104 and characterized its involvement via regulation of Hsp70 ATPase activity as a nucleotide exchange factor. In Study II we found out that Hsp110 undergoes translational frameshifting during its expression resulting in a nuclear targeting. Nuclear Hsp110 interacts with Hsp70 and reprograms the proteostasis system to better deal with stress and to confer longevity. Study III describes regulation of Hsp70 function in PQC by the nucleotide exchange factor Fes1. We found that rare alternative splicing regulates Fes1 subcellular localization in the cytosol and nucleus and that the cytosolic isoform has a key role in PQC. In Study IV we have revealed the molecular mechanism that Fes1 employ in PQC. We show that Fes1 carries a specialized release domain (RD) that ensures the efficient release of protein substrates from Hsp70, explaining how Fes1 maintains the Hsp70-chaperone system clear of persistent misfolded proteins. In Study V we report on the use of a novel bioluminescent reporter (Nanoluc) for use in yeast to measure the gene expression and protein levels. In summary, this thesis contributes to the molecular understanding of chaperone-dependent PQC mechanisms both at the level of individual components as well as how they interact to ensure proteostasis.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2017
National Category
Biochemistry Molecular Biology Cell Biology
Research subject
Molecular Bioscience
Identifiers
urn:nbn:se:su:diva-148410 (URN)978-91-7649-998-6 (ISBN)978-91-7649-999-3 (ISBN)
Public defence
2017-12-08, E306, Arrheniuslaboratorierna, Svante Arrhenius väg 20 C, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.

Available from: 2017-11-15 Created: 2017-10-24 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Kaimal, Jayasankar MohanakrishnanHabernig, LukasBüttner, SabrinaAndréasson, Claes

Search in DiVA

By author/editor
Kaimal, Jayasankar MohanakrishnanHabernig, LukasBüttner, SabrinaAndréasson, Claes
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
BiochemistryMolecular BiologyCell Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf