Open this publication in new window or tab >>2017 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 4, article id 043007Article in journal (Refereed) Published
Abstract [en]
Weakly interacting massive particles (WIMPs), which are among the best motivated dark matter (DM) candidates, could make up all or only a fraction of the total DM budget. We consider a scenario in which WIMPs are a subdominant DM component; such a scenario would affect both current direct and indirect bounds on the WIMP-nucleon scattering cross section. In this paper we focus on indirect searches for the neutrino flux produced by annihilation of subdominant WIMPs captured by the Sun or the Earth via either spin-dependent or spin-independent scattering. We derive the annihilation rate and the expected neutrino flux at neutrino observatories. In our computation, we include an updated chemical composition of the Earth with respect to the previous literature, leading to an increase of the Earth's capture rate for spin-dependent scattering by a factor of 3. Results are compared with current bounds from Super-Kamiokande and IceCube. We discuss the scaling of bounds from both direct and indirect detection methods with the WIMP abundance.
National Category
Physical Sciences
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-142494 (URN)10.1103/PhysRevD.95.043007 (DOI)000394664300001 ()2-s2.0-85021962411 (Scopus ID)
2017-05-122017-05-122022-10-19Bibliographically approved