Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
316L stainless steel designed to withstand intermediate temperature
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 52017 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 135, p. 1-8Article in journal (Refereed) Published
Abstract [en]

Austenitic stainless steel 316L was fabricated for withstanding elevated temperature by selective laser melting (SLM). Tensile tests at 800 degrees C were carried out on laser melted 316L with two different strain rates of 0.05 S-1 and 0.25 S-1. The laser melted 316L showed tensile strength of approximately 400 MPa at 800 degrees C, which was superior to conventional 316L. Analysis of fracture surface showed that the 316L fractured in mixed mode, ductile and brittle fracture, with an elongation of 18% at 800 degrees C. In order to understand the mechanical response, laser melted 316L was thermally treated at 800 degrees C for microstructure and phase stability. X-ray diffraction (XRD) and Electron back scattered diffraction (EBSD) of 316L treated at 800 degrees C disclosed a textured material with single austenitic phase. SEM and EBSD showed that the characteristic and inherent microstructure of laser melted 316L, consisting of elongated grains with high angle grain boundaries containing subgrains with a smaller misorientation, remained similar to as-built SLM 316L during hot tensile test at 800 degrees C. The stable austenite phase and its stable hierarchical microstructure at 800 degrees C led to the superior mechanical response of laser melted 316L.

Place, publisher, year, edition, pages
2017. Vol. 135, p. 1-8
Keywords [en]
Selective laser melting, Thermo-mechanical processing, Mechanical properties, Microstructure evolution
National Category
Materials Engineering Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-148810DOI: 10.1016/j.matdes.2017.08.072ISI: 000413236300001OAI: oai:DiVA.org:su-148810DiVA, id: diva2:1157135
Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2022-02-28Bibliographically approved
In thesis
1. Additive metallurgy - Thermal influences on structure and properties of stainless steel 316L
Open this publication in new window or tab >>Additive metallurgy - Thermal influences on structure and properties of stainless steel 316L
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Additive manufacturing (AM) as a manufacturing process has, in recent years, become widely accepted as capable of manufacturing parts that will be used in end products. In this thesis, stainless steel grade 316L parts are manufactured using two different powder bed fusion techniques, selective laser melting (SLM) and electron beam melting (EBM). It is recognized that parts made using these processes will have unique microstructures and mechanical properties that have not been seen in bulk parts produced with other methods. The driving force behind the formation of these structures is the fast cooling speed that induces segregation of elements, forming an inhomogeneous microstructure. How these structures react to thermal treatment is less well known and an essential aspect in many applications. Parts manufactured using SLM was treated with hot isostatic pressing (HIP) to investigate if the material retains its unique features. Two different HIP cycles were used, one with 1150 °C and one with 1040 °C. In both cases, the cellular sub-grain structure fades. The cycle utilizing the high temperature is found to coarsen the grain structure and thus lowering the mechanical properties significantly. As manufactured parts show yield strength (615±1 MPa), tensile strength (725±2 MPa) and microhardness (211±10 Hv), compared to values of yield strength (284±2 MPa), tensile strength (636±1 MPa) and microhardness (178±8 Hv) after 1150 °C HIP. Using HIP at 1040 °C, the material will retain a finer grain structure resulting in higher yield strength (417±7 MPa) compared to 1150 °C HIP temperature, while the UTS and hardness have a similar value. It is also observed that the dispersed inclusions formed during SLM are still present after HIP to increase the mechanical properties compared to a conventionally annealed bar (TS: 515 MPa, YS: 205 MPa). Samples manufactured using EBM was investigated to understand the influence of the in-situ heat treatment that is present in the EBM process. The material possesses a long-range heterogeneous structure in addition to the cellular structure, where the cellular structure is present at the top and disappears further down the sample. Samples with different geometries were produced to study the effect of heat flux, cooling speed and the elevated temperature of 800 °C that is present during the EBM process. The thickness of the cell boundaries is measured in different areas, revealing that geometry and size of manufactured parts have a significant impact on the evolving microstructure. It is also revealed that the tensile strength (562±4 MPa) and microhardness (161±11 Hv) is not affected by the change in microstructure, resulting in a very homogeneous material concerning these parameters. Heat treating the material at 800 °C show that the cellular structure becomes diffuse after several hours, but the grain morphology stays the same.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2020
Keywords
Additive manufacturing, Selective laser melting, Electron beam melting, Hot isostatic pressing, Stainless steel, Microstructural heterogeneity
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-176458 (URN)978-91-7797-968-5 (ISBN)978-91-7797-969-2 (ISBN)
Public defence
2020-02-07, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.

Available from: 2020-01-15 Created: 2019-12-09 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Olsén, JonShen, Zhijian James

Search in DiVA

By author/editor
Olsén, JonShen, Zhijian James
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Materials & design
Materials EngineeringMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 222 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf