Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
2017 (English)In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 19, no 11, p. 1404-1413Article in journal (Refereed) Published
Abstract [en]

Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose–response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.

Place, publisher, year, edition, pages
2017. Vol. 19, no 11, p. 1404-1413
Keywords [en]
Passive sampling, passive dosing, mixture toxicity
National Category
Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-149081DOI: 10.1039/C7EM00228AISI: 000415331100004OAI: oai:DiVA.org:su-149081DiVA, id: diva2:1157358
Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Contaminated sediments: Methods to assess release and toxicity of organic chemical mixtures
Open this publication in new window or tab >>Contaminated sediments: Methods to assess release and toxicity of organic chemical mixtures
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bottom sediments around the world store large amounts of legacy hydrophobic organic contaminants (HOCs), forming mixtures of unknown chemical composition. Primary emissions to the environment of many HOCs have been reduced as a consequence of regulation. However, HOCs may be released from the sediments to water and biota, and there is therefore a risk of negative effects on local ecosystems. The activity of benthic organisms can enhance the sediment-to-water flux of HOCs, a process called bioturbation. Few in situ assessments of the sediment-to-water flux are available in the scientific literature, and the effect of bioturbation on the sediment-to-water flux of HOCs has not been studied in the field. Thus, there is a need to improve in situ methods for direct determination of sediments as a source of HOCs to water, and thereby include the effect of bioturbation. In Paper I, a benthic flow-through chamber was developed for environmentally realistic in situ assessments of the sediment-to-water flux. In Paper II, the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) was assessed using the flow-through chamber at four sites on the Swedish Baltic Sea coast. The sediments at all four sites acted as sources of PAHs to water. In the same study, potential effects of bioturbation, with an increase of the sediment-to-water flux by up to one order of magnitude, were observed at sites with bioturbating organisms. In the past, assessing the toxicity of HOCs has been challenging due to difficulties in maintaining stable exposure concentrations of the test chemical. In Paper III, a passive dosing method, where the test chemical partitions from a polymer (silicone) to the aquatic exposure medium, was developed and tested for chronic exposure. A stable exposure concentration could be maintained, and the chronic toxicity to the sediment-dwelling harpacticoid Nitocra spinipes of chronic exposure to triclosan was assessed in a 6-week population development test. In Paper IV, a passive sampling and dosing method was developed and used to assess the toxicity of an environmental chemical mixture of bioavailable sediment-associated HOCs transferred from a contaminated sediment to the laboratory-based bioassay. The passive sampling and dosing method can be used to assess the toxicity of environmental mixtures of chemicals at environmentally realistic concentrations to which ecosystems are constantly exposed.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2017. p. 183
Keywords
Sediment, Hydrophobic organic contaminants, Flux, Bioturbation, Passive sampling, Passive dosing, Mixture toxicity
National Category
Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-149084 (URN)978-91-7797-095-8 (ISBN)978-91-7797-096-5 (ISBN)
Public defence
2018-01-12, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 2012–1211
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.

Available from: 2017-12-20 Created: 2017-11-24 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Mustajärvi, LukasEriksson-Wiklund, Ann-KristinGorokhova, ElenaSobek, Anna
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science: Processes & Impacts
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf