Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structures of the human mitochondrial ribosome in native states of assembly
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0001-9178-1006
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0002-2662-6373
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).ORCID iD: 0000-0003-2221-482X
Show others and affiliations
Number of Authors: 82017 (English)In: Nature Structural & Molecular Biology, ISSN 1545-9993, E-ISSN 1545-9985, Vol. 24, no 10, p. 866-869Article in journal (Refereed) Published
Abstract [en]

Mammalian mitochondrial ribosomes (mitoribosomes) have less rRNA content and 36 additional proteins compared with the evolutionarily related bacterial ribosome. These differences make the assembly of mitoribosomes more complex than the assembly of bacterial ribosomes, but the molecular details of mitoribosomal biogenesis remain elusive. Here, we report the structures of two late-stage assembly intermediates of the human mitoribosomal large subunit (mt-LSU) isolated from a native pool within a human cell line and solved by cryo-EM to similar to 3-angstrom resolution. Comparison of the structures reveals insights into the timing of rRNA folding and protein incorporation during the final steps of ribosomal maturation and the evolutionary adaptations that are required to preserve biogenesis after the structural diversification of mitoribosomes. Furthermore, the structures redefine the ribosome silencing factor (RsfS) family as multifunctional biogenesis factors and identify two new assembly factors (L0R8F8 and mt-ACP) not previously implicated in mitoribosomal biogenesis.

Place, publisher, year, edition, pages
2017. Vol. 24, no 10, p. 866-869
Keywords [en]
Cryoelectron microscopy, Ribosome
National Category
Biological Sciences
Research subject
Biochemistry towards Bioinformatics; Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-148876DOI: 10.1038/nsmb.3464ISI: 000412278000014PubMedID: 28892042OAI: oai:DiVA.org:su-148876DiVA, id: diva2:1159201
Available from: 2017-11-22 Created: 2017-11-22 Last updated: 2022-02-28Bibliographically approved
In thesis
1. Peering Beyond the Noise in Experimental Biophysical Data
Open this publication in new window or tab >>Peering Beyond the Noise in Experimental Biophysical Data
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Experimental protein structure determination methods make up a fundamental part of our understanding of biological systems. Manual interpretation of the output from these methods has been made obsolete by the sheer size and complexity of the acquired data. Instead, computational methods are becoming essential for this task and with the advent of high-throughput methods the efficiency and robustness of these methods are a major concern. This work focuses on the computational challenge of efficiently extracting statistically supported information from noisy or significantly reduced experimental data.

Small-angle X-ray scattering (SAXS) is a method capable of probing structural information with many experimental benefits compared to alternative methods. However, the acquired data is a noisy reduction of a large set of structural features into a low-dimensional signal-mixture, which significantly limits its interpretability. Due to this SAXS has this far been limited to conclusions about large-scale structural features, like radius of gyration or the oligomeric state of the sample. In this thesis I present an approach where SAXS data is used to guide molecular dynamics simulations to explore experimentally relevant conformational states. The experimental data is fed into the simulations through a metadynamics protocol, which explores the experimental data through conformational sampling subject to thermodynamic restraints. I show how this approach makes it possible to use SAXS to produce atomic-resolution models and make further-reaching conclusions about the underlying biological system, in particular by showcasing de novo folding of a small protein.

Another experimental method that generates noisy and reduced data is cryogenic electron microscopy (cryo-EM). Due to recent development in the field, the computational burden has become a considerable bottleneck, which greatly limits the throughput of the method. I present computational techniques to alleviate this burden through the use of specialized algorithms capable of efficient execution on graphics processing units (GPUs). This work improves the computational efficiency of the entire pipeline by several orders of magnitude and significantly advances the overall efficiency and applicability of the method. I show how this enables the development of improved algorithms with increased capabilities for extracting relevant biological information form the data. Several such improvements are presented that significantly increase the resolution of the refinement results and provide additional information about the dynamics of the system. Additionally, I present an application of these methods to data collected on a biogenesis intermediate of the mitochondrial ribosome. The new structures provide insights into the timing of the rRNA folding and protein incorporation as well as the role of two previously unknown assembly factors during the final stages of ribosome maturation.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2019. p. 53
Keywords
Cryo-EM, mitochondrial ribosome, SAXS, molecular dynamics, metadynamics
National Category
Biochemistry Molecular Biology
Research subject
Biochemistry towards Bioinformatics
Identifiers
urn:nbn:se:su:diva-167809 (URN)978-91-7797-711-7 (ISBN)978-91-7797-712-4 (ISBN)
Public defence
2019-05-24, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2019-04-29 Created: 2019-04-04 Last updated: 2025-02-20Bibliographically approved
2. Structural characterisation of mitochondrial macromolecular complexes using cryo-EM: Mitoribosome biogenesis and respiratory chain supercomplex
Open this publication in new window or tab >>Structural characterisation of mitochondrial macromolecular complexes using cryo-EM: Mitoribosome biogenesis and respiratory chain supercomplex
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mitochondria, popularly known as powerhouse of the cell, contain specialised mitoribosomes that synthesise essential membrane proteins. These essential proteins are required to form enzyme complexes, which carry out the process of oxidative phosphorylation (OXPHOS). OXPHOS is carried out by five enzyme complexes (Complex I-V), out of which complex I, III and IV pump protons during electron transfer from NADH to Oand complex V uses the generated proton gradient to synthesise ATP. Cryo-EM, as a revolutionary technique in structural biology made it possible to determine the structures of mitoribosome assembly intermediates and respiratory chain supercomplexes. These structures have allowed us to investigate the mitoribosome biogenesis pathway in human and yeast and to gain deeper insights into the architecture of supercomplexes. In the first area of research, using cryo-EM we were for the first time able to capture mitoribosomes in different late stages of assembly and to determine their high-resolution structures with novel factors bound. Investigation of this process was previously unreachable due to lack of techniques to trap these mitoribosome complexes in different states of assembly. The structures of these assembly intermediates establish the role of assembly factors such as MALSU1, LOR8F8, mt-ACP, MTG1 and mitoribosomal proteins (MRPs) in mitoribosome biogenesis and to ensure proper maturation of each subunit, reflecting their role in regulating translation. Furthermore, genetic deletion studies of MTG1 and uL16m in yeast show the importance of transiently acting factors and MRPs in the mitoribosome assembly process and their effects on translation. The assembly pathway of mitoribosomes is critical for protein synthesis since defects in the translation process causes inherited human pathologies. Therefore, elucidation of mitoribosomal biogenesis pathways may also contribute to the development of potential new therapeutic opportunities. In the second research area, structures of the respiratory chain supercomplex from yeast were determined. These are the first near-atomic resolution structures that show organization of complex III and complex IV into two distinct classes that form higher order assemblies (III2IV1and III2IV2). Moreover, the architecture of the supercomplex structures differs from the previously determined respirasomes (I1III2IV1) structures in mammals. We obtained a near-atomic resolution structure of the yeast complex IV, revealed core protein-protein and protein-lipid interactions that hold the supercomplex together. Moreover we found novel subunits required for supercomplex formation in S. cerevisiae. The last part of my study focuses on cryo-EM sample method development where we could successfully demonstrate the usefulness of a simple pressure-assisted sample preparation method for microcrystals, proteins and mitochondria. Our findings show great resolution improvements of selected area electron diffraction patterns of microcrystals, a significant reduction in needed sample concentration for single particle studies and an enrichment of gold nano-particles for tomographic studies.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2020. p. 50
Keywords
Mitochondria, mitoribosome biogenesis, mitoribosome assembly factors, yeast respiratory supercomplexes, single particle electron cryo-microscopy, cryo-EM sample preparation
National Category
Structural Biology Biochemistry Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-180776 (URN)978-91-7911-156-4 (ISBN)978-91-7911-157-1 (ISBN)
Public defence
2020-06-08, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.

Available from: 2020-05-14 Created: 2020-04-16 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Rathore, SorbhiKimanius, DariAibara, ShintaroAmunts, Alexey

Search in DiVA

By author/editor
Rathore, SorbhiKimanius, DariAibara, ShintaroAmunts, Alexey
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Nature Structural & Molecular Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1053 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf