Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enabling distributed intelligence assisted Future Internet of Things Controller (FITC)
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2017 (English)In: Applied Computing and Informatics, ISSN 1578-4487, E-ISSN 2210-8327Article in journal (Refereed) Epub ahead of print
Abstract [en]

The unprecedented prevalence of ubiquitous sensing will revolutionise the Future Internet where state-of-the-art Internet-of-Things (IoT) is believed to play the pivotal role. In the fast forwarding IoT paradigm, hundreds of billions of things are estimated to be deployed which would give rise to an enormous amount of data. Cloud computing has been the prevailing choice for controlling the connected things and the data, and providing intelligence based on the data. But response time and network load are on the higher side for cloud based solutions. Recently, edge computing is gaining growing attention to overcome this by employing rule-based intelligence. However, requirements of rules do not scale well with the proliferation of things. At the same time, rules fail in uncertain events and only offer pre-assumed intelligence. To counter this, this paper proposes a novel idea of leveraging the belief-network with the edge computing to utilize as an IoT edge-controller the aim of which is to offer low-level intelligence for IoT applications. This low-level intelligence along with cloud-based intelligence form the distributed intelligence in the IoT realm. Furthermore, a learning approach similar to reinforcement learning has been proposed. The approach, i.e. enabling a Future IoT Controller (FITC) has been verified with a simulated SmartHome scenario which proves the feasibility of the low-level intelligence in terms of reducing rules domination, faster response time and prediction through learning experiences at the edge.

Place, publisher, year, edition, pages
2017.
Keyword [en]
Future Internet, Internet of Things, edge computing, distributed intelligence, belief-network
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-149262DOI: 10.1016/j.aci.2017.05.001OAI: oai:DiVA.org:su-149262DiVA: diva2:1159978
Available from: 2017-11-24 Created: 2017-11-24 Last updated: 2017-12-14
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rahman, HasiburRahmani, Rahim
By organisation
Department of Computer and Systems Sciences
In the same journal
Applied Computing and Informatics
Information Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf