Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Medium-Range Structural Organization of Phosphorus-Bearing Borosilicate Glasses Revealed by Advanced Solid-State NMR Experiments and MD Simulations: Consequences of B/Si Substitutions
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 3
2017 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 41, 9737-9752 p.Article in journal (Refereed) Published
Abstract [en]

The short and intermediate range structures of a large series of bioactive borophosphosilicate (BPS) glasses were probed by solid-state nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations. Two BPS glass series were designed by gradually substituting SiO2 by B2O3 in the respective phosphosilicate base compositions 24.1Na(2)O-23.3CaO-48.6SiO(2)-4.0P(2)O(5) (S49) and 24.6Na(2)O-26.7CaO-46.1SiO(2)-2.6P(2)O(5) (S46), the latter constituting the 45S5 Bioglass utilized for bone grafting applications. The BPS glass networks are built by interconnected SiO4, BO4, and BO3 moieties, whereas P exists mainly as orthophosphate anions, except for a minor network-associated portion involving P-O-Si and P-O-B-[4] motifs, whose populations were estimated by heteronuclear P-31{B-11} NMR experimentation. The high Na+/Ca2+ contents give fragmented glass networks with large amounts of nonbridging oxygen (NBO) anions. The MD-generated glass models reveal an increasing propensity for NBO accommodation among the network units according to BO4 < SiO4 < BO3 << PO4. The BO4/BO3 intermixing was examined by double-quantum-single-quantum correlation B-11 NMR experiments, which evidenced the presence of all three BO3-BO3, BO3-BO4, and BO4-BO4 connectivities, with B-[3]-O-B-[4] bridges dominating. Notwithstanding that B-[4]-O-B-[4] linkages are disfavored, both NMR spectroscopy and MD simulations established their presence in these modifier-rich BPS glasses, along with non-negligible B-[4]-NBO contacts, at odds with the conventional structural view of borosilicate glasses. We discuss the relative propensities for intermixing of the Si/B/P network formers. Despite the absence of pronounced preferences for Si-O-Si bond formation, the glass models manifest subtle subnanometer-sized structural inhomogeneities, where SiO4 tetrahedra tend to self-associate into small chain/ring motifs embedded in BO3/BO4-dominated domains.

Place, publisher, year, edition, pages
2017. Vol. 121, no 41, 9737-9752 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-148999DOI: 10.1021/acs.jpcb.7b06654ISI: 000413617800028PubMedID: 28876931OAI: oai:DiVA.org:su-148999DiVA: diva2:1160386
Available from: 2017-11-27 Created: 2017-11-27 Last updated: 2017-11-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Yu, YangStevensson, BaltzarEdén, Mattias
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Physical Chemistry B
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf