Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting NOx sensor failure in heavy duty trucks using histogram-based random forests
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2017 (English)In: International Journal of Prognostics and Health Management, Vol. 8Article in journal (Refereed)
Abstract [en]

Being able to accurately predict the impending failures of truck components is often associated with significant amount of cost savings, customer satisfaction and flexibility in maintenance service plans. However, because of the diversity in the way trucks typically are configured and their usage under different conditions, the creation of accurate prediction models is not an easy task. This paper describes an effort in creating such a prediction model for the NOx sensor, i.e., a component measuring the emitted level of nitrogen oxide in the exhaust of the engine. This component was chosen because it is vital for the truck to function properly, while at the same time being very fragile and costly to repair. As input to the model, technical specifications of trucks and their operational data are used. The process of collecting the data and making it ready for training the model via a slightly modified Random Forest learning algorithm is described along with various challenges encountered during this process. The operational data consists of features represented as histograms, posing an additional challenge for the data analysis task. In the study, a modified version of the random forest algorithm is employed, which exploits the fact that the individual bins in the histograms are related, in contrast to the standard approach that would consider the bins as independent features. Experiments are conducted using the updated random forest algorithm, and they clearly show that the modified version is indeed beneficial when compared to the standard random forest algorithm. The performance of the resulting prediction model for the NOx sensor is promising and may be adopted for the benefit of operators of heavy trucks

Place, publisher, year, edition, pages
2017. Vol. 8
National Category
Computer Sciences
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-149432OAI: oai:DiVA.org:su-149432DiVA: diva2:1161600
Available from: 2017-11-30 Created: 2017-11-30

Open Access in DiVA

No full text

By organisation
Department of Computer and Systems Sciences
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf