Constraints on Galactic Neutrino Emission with Seven Years of IceCube DataShow others and affiliations
Number of Authors: 3122017 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 849, no 1, article id 67Article in journal (Refereed) Published
Abstract [en]
The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
Place, publisher, year, edition, pages
2017. Vol. 849, no 1, article id 67
Keywords [en]
gamma rays: ISM
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-150023DOI: 10.3847/1538-4357/aa8dfbISI: 000414185700011Scopus ID: 2-s2.0-85033588008OAI: oai:DiVA.org:su-150023DiVA, id: diva2:1167436
2017-12-182017-12-182022-10-19Bibliographically approved