Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 19402017 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 850, no 2, article id L35Article in journal (Refereed) Published
Abstract [en]

The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.

Place, publisher, year, edition, pages
2017. Vol. 850, no 2, article id L35
Keywords [en]
gamma-ray burst: general, gravitational waves, neutrinos
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-150934DOI: 10.3847/2041-8213/aa9aedISI: 000417541800010OAI: oai:DiVA.org:su-150934DiVA, id: diva2:1171882
Available from: 2018-01-08 Created: 2018-01-08 Last updated: 2018-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDumm, Jonathan P.Finley, ChadFlis, SamuelHultqvist, KlasWalck, ChristianZoll, Marcel
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf