Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Green-yellow emitting hybrid light emitting electrochemical cell
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0003-0763-1457
Show others and affiliations
Number of Authors: 82017 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, no 46, p. 12062-12068Article in journal (Refereed) Published
Abstract [en]

Light-emitting electrochemical cells (LECs) are attractive candidates for future low-cost lighting applications such as light-emitting smart tags, thanks to their simplicity, fully solution-based fabrication and flexibility. However, high brightness and efficiency in combination with satisfactory operation lifetimes need to be achieved for different emission colours bearing future device commercialization in mind. LECs emitting in the yellow-green spectral range, where the human eye is most sensitive are thereby particularly attractive. Here we present an improved hybrid LEC based on an Ir-iTMC, [Ir(4-Fppy)(2)(pbpy)][PF6] (4-Fppy = 2-(4-fluorophenyl) pyridinato, pbpy = 6-phenyl-2,2'-bipyridine) emitting at 557 nm. It features a luminance of 2400 cd m(-2) when driven at a constant voltage of 4 V, and a lifetime of 271 h at a luminance of 1500 cd m(-2) under pulsed current operation. The hybrid LEC shows an enhanced performance compared to a LEC solely based on the Ir-ITMC where operation lifetimes of 165 h at a luminance above 1200 cd m(-2) under pulsed current operation conditions were observed. The performance improvement was achieved by addition of a solution-processed ZnO nanoparticle film on top.

Place, publisher, year, edition, pages
2017. Vol. 5, no 46, p. 12062-12068
National Category
Materials Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-150967DOI: 10.1039/c7tc02976dISI: 000416540600009OAI: oai:DiVA.org:su-150967DiVA, id: diva2:1173465
Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2018-01-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Namanga, J. E.Smetana, VolodymyrMudring, Anja-Verena
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry C
Materials EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf