Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Show others and affiliations
2017 (English)In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 18, no 12, article id 2765Article in journal (Refereed) Published
Abstract [en]

Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.

Place, publisher, year, edition, pages
2017. Vol. 18, no 12, article id 2765
Keywords [en]
aphid resistance, lipoxygenase, Hordeum vulgare, Rhopalosiphum padi, Myzus persicae
National Category
Biological Sciences
Research subject
Plant Physiology
Identifiers
URN: urn:nbn:se:su:diva-151583DOI: 10.3390/ijms18122765ISI: 000418896700265PubMedID: 29257097OAI: oai:DiVA.org:su-151583DiVA, id: diva2:1174514
Available from: 2018-01-15 Created: 2018-01-15 Last updated: 2018-02-20Bibliographically approved
In thesis
1. Barley defense genes against aphids
Open this publication in new window or tab >>Barley defense genes against aphids
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aphids are insect pests with major importance worldwide. By feeding from plant phloem, they directly withdraw nutrients. The feeding injury is often visible in the form of leaf rolling, chlorosis, necrosis or plant deformation. Their pest status is attributed also to vectoring of plant viruses. Aphid infestation on crop plants is currently managed with the use of pesticides, which may pose a threat to the environment. An alternative approach would be to identify and characterize genetic factors contributing to aphid resistance, as well as agents inducing resistance, with the intention to use this knowledge in breeding programs.

The aim of this thesis was to identify such resistance genes and characterize their involvement in plant-aphid interactions. This was accomplished using two approaches. Firstly, two putative aphid-resistance genes from barley, CI2c encoding a chymotrypsin inhibitor and LOX2.2 encoding a lipoxygenase, were transformed into Arabidopsis and/or barley and the effects of transformation were studied with regard to the performance of two aphid species. One was the specialist bird cherry-oat aphid (Rhopalosiphum padi L.), which is a pest on major cereals, and the other was a generalist, the green peach aphid (Myzus persicae Sulzer), which is a pest on plants belonging to more than 40 families. The effects of transformation were also studied concerning effects on the expression of other defense-related genes in the transgenic plants. Secondly, the effects of plant treatment with volatiles were studied with regard to induction of plant resistance, followed by tests with bird cherry-oat aphid on the treated plants.

The study of overexpression of CI2c showed that the gene product transiently reduced green peach aphid fecundity on transgenic Arabidopsis, but indirectly decreased this aphid’s avoidance of barley by suppressing defense. The transformation had no effects on bird cherry-oat aphids’ behaviour or fecundity. Overexpression of LOX2.2 was shown to affect expression of other genes regulated by jasmonic acid and decreased the short-term fecundity of both the bird cherry-oat aphid and the green peach aphid on barley. The study of volatile treatments supported the idea that resistance against aphids can be induced by application of volatiles. Several defense gene sequences were induced by application of methyl salicylate, methyl jasmonate and (Z)-3-hexen-1-ol. Of the three volatiles tested, methyl jasmonate showed the greatest potential as inducing agent, causing a short-term reduction in aphid fecundity.

To conclude, this thesis supports the ideas that the barley genes CI2c and LOX2.2 play a role in resistance against aphids and that moderate aphid resistance can be induced by external factors. Aphids may be directly affected by the gene product or there may be an indirect effect, caused by changes in the expression of other genes involved in plant defense. The observed negative effects on aphids were of moderate magnitude and it is proposed that acting individually, those genes are not likely to cause a strong negative effect, but they may contribute to provide resistance to aphids.

Place, publisher, year, edition, pages
Stockholm: Department of Ecology, Environment and Plant Sciences, Stockholm University, 2018. p. 97
Keywords
Aphid resistance, protease inhibitor, lipoxygenase, induced plant resistance, volatiles, Hordeum vulgare, Rhopalosiphum padi, Myzus persicae
National Category
Biological Sciences Botany
Research subject
Plant Physiology
Identifiers
urn:nbn:se:su:diva-153140 (URN)978-91-7797-145-0 (ISBN)978-91-7797-146-7 (ISBN)
Public defence
2018-04-05, Vivi Täckholmssalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 4: Manuscript.

Available from: 2018-03-13 Created: 2018-02-20 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Losvik, AleksandraJonsson, Lisbeth
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
International Journal of Molecular Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf