Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An ab initio CASSCF study of zero field splitting fluctuations in the octet ground state of aqueous [Gd(iii)(HPDO3A)(H2O)]
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 5
2017 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 147, no 24, article id 244306Article in journal (Refereed) Published
Abstract [en]

In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(m)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field-CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.

Place, publisher, year, edition, pages
2017. Vol. 147, no 24, article id 244306
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-152496DOI: 10.1063/1.5010347ISI: 000418896800022PubMedID: 29289121OAI: oai:DiVA.org:su-152496DiVA, id: diva2:1181083
Available from: 2018-02-07 Created: 2018-02-07 Last updated: 2018-04-23Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Khan, ShehryarKowalewski, JozefOdelius, Michael
By organisation
Department of PhysicsDepartment of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Chemical Physics
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf