Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at root s=13 TeV with the ATLAS detector
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 28902018 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 2, article id 102Article in journal (Refereed) Published
Abstract [en]

A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

Place, publisher, year, edition, pages
2018. Vol. 78, no 2, article id 102
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-153740DOI: 10.1140/epjc/s10052-018-5553-2ISI: 000424102800003OAI: oai:DiVA.org:su-153740DiVA, id: diva2:1188041
Available from: 2018-03-06 Created: 2018-03-06 Last updated: 2018-03-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Abulaiti, YimingÅkerstedt, HenrikBertoli, GabrieleBessidskaia Bylund, OlgaBohm, ChristianCarney, Rebecca M. D.Clément, ChristopheCribbs, Wayne A.Gellerstedt, KarlHellman, StenJon-And, KerstinLundberg, OlofMilstead, David A.Moa, TorbjörnMolander, SimonShaikh, Nabila W.Shcherbakova, AnnaSilverstein, Samuel B.Sjölin, JörgenStrandberg, SaraUghetto, MichaëlValdes Santurio, EduardoWallängen, Veronica
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf