Open this publication in new window or tab >>Show others...
2015 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 143, no 7, article id 074701Article in journal (Refereed) Published
Abstract [en]
We studied CO oxidation on Ru(0001) induced by 400 nm and 800 nm femtosecond laser pulses where we find a branching ratio between CO oxidation and desorption of 1: 9 and 1: 31, respectively, showing higher selectivity towards CO oxidation for the shorter wavelength excitation. Activation energies computed with density functional theory show discrepancies with values extracted from the experiments, indicating both a mixture between different adsorbed phases and importance of non-adiabatic effects on the effective barrier for oxidation. We simulated the reactions using kinetic modeling based on the two-temperature model of laser-induced energy transfer in the substrate combined with a friction model for the coupling to adsorbate vibrations. This model gives an overall good agreement with experiment except for the substantial difference in yield ratio between CO oxidation and desorption at 400 nm and 800 nm. However, including also the initial, non-thermal effect of electrons transiently excited into antibonding states of the O-Ru bond yielded good agreement with all experimental results.
National Category
Physical Sciences
Research subject
Chemical Physics
Identifiers
urn:nbn:se:su:diva-121519 (URN)10.1063/1.4928646 (DOI)000360440400037 ()2-s2.0-84939865467 (Scopus ID)
2015-10-092015-10-052022-10-14Bibliographically approved