Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-Situ Structure Determination of a Ruthenium Racemization Catalyst and its Activated Intermediates using X-ray Absorption Spectroscopy
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0003-2758-4811
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Organic Chemistry
Research subject
Organic Chemistry; Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-153950OAI: oai:DiVA.org:su-153950DiVA, id: diva2:1188948
Available from: 2018-03-09 Created: 2018-03-09 Last updated: 2022-02-28Bibliographically approved
In thesis
1. Studies on Metalloenzymatic Dynamic Kinetic Resolutions and Iron-Catalyzed Reactions of Allenes
Open this publication in new window or tab >>Studies on Metalloenzymatic Dynamic Kinetic Resolutions and Iron-Catalyzed Reactions of Allenes
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main focus of this thesis lies in the development of new transition metal-catalyzed chemoenzymatic dynamic kinetic resolutions (DKR) of both alcohols and amines. The first part of the thesis deals with the development of new heterogeneous systems for the DKR of amines. The racemization catalysts in these different systems are all composed of palladium nanoparticles supported on either mesoporous silica or incorporated in a biocomposite that is composed of a bioactive cross-linked enzyme aggregate. 

The second part of the thesis deals with the development of a homogeneous iron catalyst in the racemization of sec-alcohols for the implementation in a chemoenzymatic DKR. Two protocols for the racemization of sec-alcohols are reported. The first one could not be combined with a chemoenzymatic kinetic resolution, although this was overcome in the second iron based protocol. 

Following the successful iron catalyzed chemoenzymatic DKR of sec-alcohols, the iron catalyst was used in the cyclization of α-allenic alcohols and N-protected amines to furnish 2,3-dihydrofurans and 2,3-dihydropyrroles, respectively. The cyclization is proceeding in a diastereoselective manner.

The last part of the thesis deals with attempts to further elucidate the mechanism of activation of a known ruthenium racemization catalyst. X-ray absorption spectroscopy using synchrotron radiation was used for this purpose.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2018. p. 97
Keywords
Racemization, Dynamic Kinetic Resolution, Enzyme Catalysis, XAS, Asymmetric Synthesis
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-153952 (URN)978-91-7797-195-5 (ISBN)978-91-7797-196-2 (ISBN)
Public defence
2018-04-27, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 7: Manuscript. Paper 8: Manuscript.

Available from: 2018-04-04 Created: 2018-03-09 Last updated: 2022-02-28Bibliographically approved
2. Unveiling Catalytic Species in Suspension/Solution-Based Reactions by In Situ X-Ray Absorption Spectroscopy: Evolution of Palladium and Ruthenium Species
Open this publication in new window or tab >>Unveiling Catalytic Species in Suspension/Solution-Based Reactions by In Situ X-Ray Absorption Spectroscopy: Evolution of Palladium and Ruthenium Species
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The palladium (Pd) and ruthenium (Ru) species in several attractive catalysts have been probed using X-ray absorption spectroscopy (XAS). The study of catalyst evolution in suspension- and solution-based reactions was the primary aim. It was achieved by performing in situ XAS experiments on Pd and Ru over the course of the reactions. A custom-made reactor was employed which allowed the catalysts to be mixed with other reaction components under desired conditions.

The first system investigated was the Heck coupling reaction catalyzed by Pd(II) complexes embedded on metal-organic frameworks. It was realized that the as-synthesized catalysts go through an instant ligand substitution process when added to the reaction mixture. Mononuclear Pd complexes are the active species at the first stage of the measurement which then gradually transform into Pd nanoclusters. At a later stage of the measurement, chloride ligands start to bind to surface atoms of the Pd nanoclusters, leading to a deactivation of the catalyst. Following the first successful in situ XAS experiment, Pd(II) carbene complexes catalyzing undirected C–H acetoxylation of benzene in the presence of an oxidant were explored. A gradual ligand substitution occurs, and the mean oxidation state of Pd increases at the same time. At a later stage, Pd nanoclusters form, while the mean oxidation state of Pd returns to the start value. Deactivation of a heterogeneous Pd(II) catalyst during cycloisomerization of acetylenic acids was then investigated using in situ XAS. The choice of substrates showed to significantly influence the nature of Pd species, and the reduction of Pd(II) forming Pd(0) aggregates causes the deactivation. Moreover, strategies of reactivating the catalyst and prevention of the deactivation were developed and examined. In the end, the activation process of a Ru catalyst was studied and the structure of the intermediate was determined by in situ XAS. It was demonstrated that an electron-donating substituent on the cyclopentadiene ligand exhibits a promoting effect on the activation, while an electron-withdrawing substituent inhibits the activation.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2019. p. 112
Keywords
Palladium and ruthenium species, Catalysts, Suspension and solution, In situ X-ray absorption spectroscopy, Activation, Deactivation
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-167340 (URN)978-91-7797-578-6 (ISBN)978-91-7797-579-3 (ISBN)
Public defence
2019-05-21, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript. Paper 6: Manuscript.

Available from: 2019-04-25 Created: 2019-03-26 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Gustafson, Karl P. J.Guðmundsson, ArnarNing, YuanBäckvall, Jan-Erling

Search in DiVA

By author/editor
Gustafson, Karl P. J.Guðmundsson, ArnarNing, YuanBäckvall, Jan-Erling
By organisation
Department of Organic ChemistryDepartment of Materials and Environmental Chemistry (MMK)
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 194 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf