Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ultrafast dissociation features in RIXS spectra of the water molecule
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-4603-2097
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering spectra (RIXS) of gas phase water via the lowest dissociative core-excited state |1sO-14a11>. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels  back to the ground state and to the first valence excited state |1b1-14a11> of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of the isotope substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.

National Category
Atom and Molecular Physics and Optics
Research subject
Chemical Physics
Identifiers
URN: urn:nbn:se:su:diva-154022OAI: oai:DiVA.org:su-154022DiVA, id: diva2:1189865
Available from: 2018-03-13 Created: 2018-03-13 Last updated: 2022-02-28Bibliographically approved
In thesis
1. Quantum chemical calculations of multidimensional dynamics probed in resonant inelastic X-ray scattering
Open this publication in new window or tab >>Quantum chemical calculations of multidimensional dynamics probed in resonant inelastic X-ray scattering
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is devoted to the theoretical study of the dynamical processes induced by light-matter interactions in molecules and molecular systems. To this end, the multidimensional nuclear dynamics probed in resonant inelastic X-ray scattering (RIXS) of small molecules, exemplified by H2O (g) and H2S (g), as well as more complex molecular systems, exemplified by NH3 (aq) and kaolinite clay, are modelled. The computational methodology consists of a combination of ab initio quantum chemistry calculations, quantum nuclear wave packet dynamics and in certain cases molecular dynamics modelling. This approach is used to simulate K-edge RIXS spectra and the theoretical results are evaluated against experimental measurements.

Specifically, the vibrational profile for decay back to the electronic ground state of the H2O molecule displays a vibrational selectivity introduced by the dynamics in the core-excited state. Simulation of the inelastic decay channel to the electronic |1b1-1,4a11> valence-excited state shows that the splitting of the spectral profile arises from the contribution of decay in the OH fragment. The character of the S1s-1 and S2p-1 core-excited states of the H2S molecule has been investigated and distinct similarities and differences with the H2O molecule have been identified. RIXS has also been used as a probe of the hydrogen bonding environment in aqueous ammonia and by detailed analysis of the valence orbitals of NH3 and water, the spectral profiles are explained. Finally, it is shown that vibrations of weakly hydrogen bonding OH are excited in RIXS decay to the electronic ground state in kaolinite. 

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2018. p. 82
Keywords
quantum chemistry, X-ray spectroscopy, RASSCF, density functional theory, ultrafast nuclear dynamics
National Category
Atom and Molecular Physics and Optics
Research subject
Chemical Physics
Identifiers
urn:nbn:se:su:diva-154057 (URN)978-91-7797-173-3 (ISBN)978-91-7797-174-0 (ISBN)
Public defence
2018-05-04, sal FP41, hus 1, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2018-04-11 Created: 2018-03-15 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ertan, EmelieSavchenko, ViktoriiaVaz da Cruz, ViniciusCouto, RafaelPietzsch, AnnetteFöhlisch, AlexanderOdelius, MichaelKimberg, Victor

Search in DiVA

By author/editor
Ertan, EmelieSavchenko, ViktoriiaVaz da Cruz, ViniciusCouto, RafaelPietzsch, AnnetteFöhlisch, AlexanderOdelius, MichaelKimberg, Victor
By organisation
Department of Physics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 516 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf