Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Controlling magnetism via transition metal exchange in the series of intermetallics Eu(T1, T2)(5)In (T = Cu, Ag, Au)
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 4
2018 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, no 6, p. 1353-1362Article in journal (Refereed) Published
Abstract [en]

Three series of intermetallic compounds Eu(T1, T2)(5)In (T = Cu, Ag, Au) have been investigated over their full compositional ranges. Single crystals of all compounds have been obtained by self-flux and were analyzed by single crystal X-ray diffraction revealing that the representatives fall into two structure types: CeCu6 (oP28, Pnma, a = 8.832(3)-9.121(2) angstrom, b = 5.306(2)-5.645(1) angstrom, c = 11.059(4)-11.437(3) angstrom, V = 518.3(3)-588.9(2) angstrom(3)) and YbMo2Al4 (t/14, /4/mmm, a = 7.139(2)-7.199(2) angstrom, c = 5.417(3)-5.508(1) angstrom, V = 276.1(2)-285.8(1) angstrom(3)). The structural preference was found to depend on the cation/anion size ratio, while the positional preference within the CeCu6 type structure shows an apparent correlation with the anion size. Chemical compression, hence, a change in cell volume, which occurs upon anion substitution, appears to be the main driving force for the change of magnetic ordering. While EuAg5In shows antiferromagnetic behavior at low temperatures, mixing Cu and Au within the same type of structure results in considerable changes in the magnetism. The Eu(Cu, Au)(5)In alloys with CeCu6 structure show complex magnetic behaviors and a strong magnetic field-induced spin-reorientation transition with the critical field of the transition being dependent on Cu/Au ratio. The alloys adopting the YbMo2Al4 type structure are ferromagnets exhibiting unusually high magnetic moments. The heat capacity of EuAu2.66Cu2.34In reveals a double-peak structure evolving with the magnetic field. However, low-temperature X-ray powder diffraction does not show a structural transition.

Place, publisher, year, edition, pages
2018. Vol. 6, no 6, p. 1353-1362
National Category
Materials Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-153617DOI: 10.1039/c7tc04964aISI: 000424652000010OAI: oai:DiVA.org:su-153617DiVA, id: diva2:1189995
Available from: 2018-03-13 Created: 2018-03-13 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Smetana, VolodymyrMudryk, YaroslavMudring, Anja-Verena
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry C
Materials EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf