Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
Stockholm University, Faculty of Science, Department of Astronomy. Imperial College London, UK.
Show others and affiliations
Number of Authors: 22
2018 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 18, no 2, p. 1379-1394Article in journal (Refereed) Published
Abstract [en]

Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60 degrees S and 60 degrees N outside the polar regions (60-90 degrees). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60 degrees S and 60 degrees N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60 degrees S and 60 degrees N. We find that total column ozone between 60 degrees S and 60 degrees N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

Place, publisher, year, edition, pages
2018. Vol. 18, no 2, p. 1379-1394
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-153781DOI: 10.5194/acp-18-1379-2018ISI: 000424257700001OAI: oai:DiVA.org:su-153781DiVA, id: diva2:1191824
Available from: 2018-03-20 Created: 2018-03-20 Last updated: 2018-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Mortlock, Daniel J.Haigh, Joanna D.
By organisation
Department of Astronomy
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf