Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tsuji-Trost Reaction of Non-Derivatized Allylic Alcohols
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0001-8735-5397
Number of Authors: 42018 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 14, p. 3488-3498Article in journal (Refereed) Published
Abstract [en]

Palladium-catalyzed allylic substitution of non-derivatized enantioenriched allylic alcohols with a variety of uncharged N-, S-, C- and O-centered nucleophiles using a bidentate BiPhePhos ligand is described. A remarkable effect of the counter ion (X) of the XPd[kappa(2)-BiPhePhos][kappa(3)-C3H5] was observed. When ClPd[kappa(2)-BiPhePhos][eta(3)-C3H5] (complexI) was used as catalyst, non-reproducible results were obtained. Study of the complex by X-ray crystallography, (PNMR)-P-31 spectroscopy, and ESI-MS showed that a decomposition occurred where one of the phosphite ligands was oxidized to the corresponding phosphate, generating ClPd[kappa(1)-BiPhePhosphite-phosphate][eta(3)-C3H5] species (complexII). When the chloride was exchanged to the weaker coordinating OTf- counter ion the more stable Pd[kappa(2)-BiPhePhos][eta(3)-C3H5](+)+[OTf] (-) (complexIII) was formed. ComplexIII performed better and gave higher enantiospecificities in the substitution reactions. ComplexIII was evaluated in Tsuji-Trost reactions of stereogenic non-derivatized allylic alcohols. The desired products were obtained in good to excellent yields (71-98%) and enantiospecificities (73-99%) for both inter- and intramolecular substitution reactions with only water generated as a by-product. The methodology was applied to key steps in total synthesis of (S)-cuspareine and (+)-lentiginosine. A reaction mechanism involving a palladium hydride as a key intermediate in the activation of the hydroxyl group is proposed in the overall transformation.

Place, publisher, year, edition, pages
2018. Vol. 24, no 14, p. 3488-3498
Keywords [en]
asymmetric catalysis, cuspareine, OH activation, palladium, Tsuji-Trost reaction
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-154728DOI: 10.1002/chem.201705164ISI: 000426764400020PubMedID: 29178406OAI: oai:DiVA.org:su-154728DiVA, id: diva2:1195007
Available from: 2018-04-04 Created: 2018-04-04 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Akkarasamiyo, SunisaSawadjoon, SupapornSamec, Joseph S. M.

Search in DiVA

By author/editor
Akkarasamiyo, SunisaSawadjoon, SupapornSamec, Joseph S. M.
By organisation
Department of Organic Chemistry
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 503 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf