Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unraveling Hidden Mg-Mn-H Phase Relations at High Pressures and Temperatures by in Situ Synchrotron Diffraction
Show others and affiliations
Number of Authors: 72018 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 3, p. 1614-1622Article in journal (Refereed) Published
Abstract [en]

The MgMnH system was investigated by in situ high pressure studies of reaction mixtures MgH2MnH2. The formation conditions of two complex hydrides with composition Mg3MnH7 were established. Previously known hexagonal Mg3MnH7 (h-Mg3MnH7) formed at pressures 1.52 GPa and temperatures between 480 and 500 degrees C, whereas an orthorhombic form (o-Mg3MnH7) was obtained at pressures above 5 GPa and temperatures above 600 degrees C. The crystal structures of the polymorphs feature octahedral [Mn(I)H-6](5) complexes and interstitial H-. Interstitial H- is located in trigonal bipyramidal and square pyramidal interstices formed by Mg2+ ions in h- and o-Mg3MnH7, respectively. The hexagonal form can be retained at ambient pressure, whereas the orthorhombic form upon decompression undergoes a distortion to monoclinic Mg3MnH7 (m-Mg3MnH7). The structure elucidation of o- and m-Mg3MnH7 was aided by first-principles density functional theory (DFT) calculations. Calculated enthalpy versus pressure relations predict m- and o-Mg3MnH7 to be more stable than h-Mg3MnH7 above 4.3 GPa. Phonon calculations revealed o-Mg3MnH7 to be dynamically unstable at pressures below 5 GPa, which explains its phase transition to m-Mg3MnH7 on decompression. The electronic structure of the quenchable polymorphs h- and m-Mg3MnH7 is very similar. The stable 18-electron complex [MnH6](5-) is mirrored in the occupied states, and calculated band gaps are around 1.5 eV. The study underlines the significance of in situ investigations for mapping reaction conditions and understanding phase relations for hydrogen-rich complex transition metal hydrides.

Place, publisher, year, edition, pages
2018. Vol. 57, no 3, p. 1614-1622
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-154596DOI: 10.1021/acs.inorgchem.7b02968ISI: 000424730800075PubMedID: 29323885OAI: oai:DiVA.org:su-154596DiVA, id: diva2:1195389
Available from: 2018-04-05 Created: 2018-04-05 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Spektor, KristinaHäussermann, Ulrich

Search in DiVA

By author/editor
Spektor, KristinaHäussermann, Ulrich
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf