Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanistic Insight into Enantioselective Palladium-Catalyzed Oxidative Carbocyclization-Borylation of Enallenes
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Show others and affiliations
Number of Authors: 6
2018 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 10, p. 2433-2439Article in journal (Refereed) Published
Abstract [en]

The asymmetric palladium-catalyzed oxidative carbocyclization-borylation of enallenes, employing a chiral phosphoric acid as co-catalyst, constitutes an efficient and convenient entry into functionalized building blocks with cyclopentene scaffolds in high enantiopurity. Up till now there has been a lack of knowledge concerning the origin of enantioselectivity of this reaction as well as the absolute configuration of the product. Herein, we report the crystal structure of one of the compounds generated via this carbocyclization, providing the link between the configuration of the products and the configuration of the chiral phosphoric acid used in the reaction. Furthermore, the origin of the enantioselectivity is thoroughly investigated with density functional theory (DFT) calculations. By careful examination of different possible coordination modes, it is shown that the chiral phosphoric acid and the corresponding phosphate anion serve as ligands for palladium during the key stereoselectivity-determining cyclization step. In addition, we examine reactions wherein an extra chiral reagent, a p-benzoquinone containing a chiral sulfoxide, is used. The combined experimental and theoretical studies provide insight into the details of complexation of palladium with various species present in the reaction mixture, furnishing a general understanding of the factors governing the stereoselectivity of this and related catalytic reactions.

Place, publisher, year, edition, pages
2018. Vol. 24, no 10, p. 2433-2439
Keyword [en]
asymmetric catalysis, chiral phosphoric acid, computational chemistry, oxidative carbocyclization, palladium
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-154588DOI: 10.1002/chem.201705239ISI: 000425381200022PubMedID: 29266429OAI: oai:DiVA.org:su-154588DiVA, id: diva2:1195700
Available from: 2018-04-06 Created: 2018-04-06 Last updated: 2018-04-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mendoza, AbrahamPosevins, DanielsHimo, FahmiBäckvall, Jan E.
By organisation
Department of Organic Chemistry
In the same journal
Chemistry - A European Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf