Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermochromic halide perovskite solar cells
Show others and affiliations
Number of Authors: 142018 (English)In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 17, no 3, p. 261-267Article in journal (Refereed) Published
Abstract [en]

Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 degrees C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

Place, publisher, year, edition, pages
2018. Vol. 17, no 3, p. 261-267
National Category
Chemical Sciences
Research subject
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-154829DOI: 10.1038/s41563-017-0006-0ISI: 000426012000016PubMedID: 29358645OAI: oai:DiVA.org:su-154829DiVA, id: diva2:1196733
Available from: 2018-04-11 Created: 2018-04-11 Last updated: 2022-02-26Bibliographically approved
In thesis
1. Structure determination of beam sensitive crystals by rotation electron diffraction: the impact of sample cooling
Open this publication in new window or tab >>Structure determination of beam sensitive crystals by rotation electron diffraction: the impact of sample cooling
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electron crystallography is complementary to X-ray crystallography. Single crystal X-ray diffraction requires the size of a crystal to be larger than about 5 × 5 × 5 μm3 while a TEM allows a million times smaller crystals being studied. This advantage of electron crystallography has been used to solve new structures of small crystals. One method which has been used to collect electron diffraction data is rotation electron diffraction (RED) developed at Stockholm University. The RED method combines the goniometer tilt and beam tilt in a TEM to achieve 3D electron diffraction data. Using a high angle tilt sample holder, RED data can be collected to cover a tilt range of up to 140o

Here the crystal structures of several different compounds have been determined using RED. The structure of needle-like crystals on the surface of NiMH particles was solved as La(OH)2. A structure model of metal-organic layers has been built based on RED data. A 3D MOF structure was solved from RED data. Two halide perovskite structures and two newly synthesized aluminophosphate structures were solved. For those beam sensitive crystals characterized here, sample cooling down to -170oC was used to reduce the beam damage. The low temperature not only reduces electron beam damage, but also keeps the structure more stable in the high vacuum in a TEM and improves the quality of the diffraction data. It is shown that cooling can improve the resolution of diffraction data for MOFs and zeolites, for samples undergoing phase changes at low temperature, the data quality could be worse by cooling. In summary, cooling can improve the ED data quality as long as the low temperature does not trigger structural changes. 

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2017
Keywords
electron crystallography, rotation electron diffraction, structure determination, cooling
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-145636 (URN)978-91-7649-856-9 (ISBN)978-91-7649-857-6 (ISBN)
Public defence
2017-10-11, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 3: Submitted.

Available from: 2017-09-18 Created: 2017-08-14 Last updated: 2022-02-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Sun, JunliangHawks, Steven A.

Search in DiVA

By author/editor
Sun, JunliangHawks, Steven A.
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Nature Materials
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 113 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf