CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt174",{id:"formSmash:upper:j_idt174",widgetVar:"widget_formSmash_upper_j_idt174",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt175_j_idt177",{id:"formSmash:upper:j_idt175:j_idt177",widgetVar:"widget_formSmash_upper_j_idt175_j_idt177",target:"formSmash:upper:j_idt175:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Computing the ideal class monoid of an orderPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

ideal classes, orders, number fields, integral matrices
##### National Category

Algebra and Logic
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-155131OAI: oai:DiVA.org:su-155131DiVA, id: diva2:1197210
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt501",{id:"formSmash:j_idt501",widgetVar:"widget_formSmash_j_idt501",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt513",{id:"formSmash:j_idt513",widgetVar:"widget_formSmash_j_idt513",multiple:true}); Available from: 2018-04-12 Created: 2018-04-12 Last updated: 2018-04-12Bibliographically approved
##### In thesis

There are well known algorithms to compute the class group of the maximal order of a number field K and the group of invertible ideal classes of a non-maximal order R. In this paper we explain how to compute also the isomorphism classes of non-invertible ideals of an order R in a finite product of number fields K. In particular we also extend the above-mentioned algorithms to this more general setting. Moreover, we generalize a theorem of Latimer and MacDuffee providing a bijection between the conjugacy classes of integral matrices with given minimal and characteristic polynomials and the isomorphism classes of lattices in certain Q-algebras, which under certain assumptions can be explicitly described in terms of ideal classes.

1. Computing abelian varieties over finite fields$(function(){PrimeFaces.cw("OverlayPanel","overlay1197311",{id:"formSmash:j_idt796:0:j_idt800",widgetVar:"overlay1197311",target:"formSmash:j_idt796:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1234",{id:"formSmash:j_idt1234",widgetVar:"widget_formSmash_j_idt1234",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1287",{id:"formSmash:lower:j_idt1287",widgetVar:"widget_formSmash_lower_j_idt1287",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1288_j_idt1290",{id:"formSmash:lower:j_idt1288:j_idt1290",widgetVar:"widget_formSmash_lower_j_idt1288_j_idt1290",target:"formSmash:lower:j_idt1288:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});