Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Physical Geography.
Number of Authors: 4
2018 (English)In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 202, p. 205-218Article in journal (Refereed) Published
Abstract [en]

The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate ( > 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events ( > 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

Place, publisher, year, edition, pages
2018. Vol. 202, p. 205-218
Keyword [en]
Regional modeling, Climate model evaluation, Precipitation, Sahel, Rain-day analysis
National Category
Meteorology and Atmospheric Sciences
Research subject
Atmospheric Sciences and Oceanography
Identifiers
URN: urn:nbn:se:su:diva-154700DOI: 10.1016/j.atmosres.2017.12.001ISI: 000426226500021OAI: oai:DiVA.org:su-154700DiVA, id: diva2:1198135
Available from: 2018-04-16 Created: 2018-04-16 Last updated: 2018-04-16Bibliographically approved
In thesis
1. On Sahelian-Sudan rainfall and its moisture sources
Open this publication in new window or tab >>On Sahelian-Sudan rainfall and its moisture sources
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The African Sahel is one of the most vulnerable regions to climate variability at different time scales. It is an arid to semi-arid region with limited water resources. The summer rainfall is one of these sources, but it exhibits pronounced interannual variability. This thesis presents several aspects of Sahelian Sudan rainfall. Sudan is located at the eastern fringe of the Sahel and its least studied part. We have examined the impact of tropical deforestation on the rainfall, the moisture sources of the region and the temporal characteristics of the observed and modeled rainfall. In a sensitivity study we performed three simulations, one control simulation and then setting the surface condition of South Sudan to either grass or desert conditions. The rainfall was reduced by 0.1 − 0.9 in the grass scenario and by 0.1 − 2.1 mm day−1 (hereafter mm d−1) in the desert scenario. These changes also propagated northward into Sahelian Sudan, indicating a remote impact. The total moisture convergence into Sahelian Sudan was reduced by 11.5% and 21.9% for grass and desert conditions, respectively. The change in moisture convergence into the region motivated a comprehensive analysis of the moisture sources for the region. Two different modeling approaches, Lagrangian and Eulerian, were applied to identify the moisture sources and quantify their contributions to the total annual rainfall budget. The analysis shows that atmospheric flows associated with the Inter-Tropical Convergence Zone (ITCZ), e.g. from Guinea Coast, Central African and Western Sahel, brings about 40% − 50% of the annual moisture supply, while local evaporation adds about 20%. The rest of the moisture comes from the Mediterranean, Arabian Peninsula and the Southern part of the Indian Ocean. While there were differences in the details between the results from the two modeling approaches, they agree on the larger scale results. In an attempt to characterize the temporal character of the rainfall, observed and modeled daily rainfall from different regional climate models was classified into five categories: weak (0.1 −1.0), moderate (>1.0 − 10.0), moderately strong (>10.0 − 20.0), strong (>20.0 − 30.0), and very strong (>30.0) mm d−1. We found that most rain-days were in the weak to moderate rainfall categories, accounting for 60% − 75%. Days that have strong rainfall represent about 6% of the total rain-days, yet they represent about 28% − 48% of the total amount of the annual rainfall. Regional climate models fail to produce the strong rainfall, instead most of the modeled rain-days are in the moderate category and consequently the models overestimated the number of rain-days per year.

Place, publisher, year, edition, pages
Stockholm: Department of Meteorology, Stockholm University, 2015. p. 36
Keyword
Sudan, Sahel, rainfall, land use, deforestation, moisture sources, moisture transport, Lagrangian, moisture tagging, regional model, climate modeling
National Category
Meteorology and Atmospheric Sciences
Research subject
Atmospheric Sciences and Oceanography
Identifiers
urn:nbn:se:su:diva-122731 (URN)978-91-7649-281-9 (ISBN)
Public defence
2015-12-11, William-Olssonsalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2015-11-19 Created: 2015-11-10 Last updated: 2018-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Salih, Abubakr A. M.Tjernström, MichaelZhang, Qiong
By organisation
Department of Meteorology Department of Physical Geography
In the same journal
Atmospheric research
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf