Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel system to monitor mitochondrial translation in yeast
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Show others and affiliations
Number of Authors: 7
2018 (English)In: Microbial Cell, ISSN 2311-2638, Vol. 5, no 3, p. 158-164Article in journal (Refereed) Published
Abstract [en]

The mitochondrial genome is responsible for the production of a handful of polypeptides that are core subunits of the membrane-bound oxidative phosphorylation system. Until now the mechanistic studies of mitochondrial protein synthesis inside cells have been conducted with inhibition of cytoplasmic protein synthesis to reduce the background of nuclear gene expression with the undesired consequence of major disturbances of cellular signaling cascades. Here we have generated a system that allows direct monitoring of mitochondrial translation in unperturbed cells. A recoded gene for superfolder GFP was inserted into the yeast (Saccharomyces cerevisiae) mitochondrial genome and enabled the detection of translation through fluorescence microscopy and flow cytometry in functional mitochondria. This novel tool allows the investigation of the function and regulation of mitochondrial translation during stress signaling, aging and mitochondrial biogenesis.

Place, publisher, year, edition, pages
2018. Vol. 5, no 3, p. 158-164
Keyword [en]
mitochondrial translation, flow cytometry, superfolder GFP, strain engineering
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-156126DOI: 10.15698/mic2018.03.621ISI: 000429112200004PubMedID: 29487862OAI: oai:DiVA.org:su-156126DiVA, id: diva2:1203359
Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-05-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Suhm, TamaraRzepka, MagdalenaKaimal, Jayasankar MohanakrishnanAndréasson, ClaesBüttner, SabrinaOtt, Martin
By organisation
Department of Biochemistry and BiophysicsDepartment of Molecular Biosciences, The Wenner-Gren Institute
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf