Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
DESIREE electrospray ion source test bench and setup for collision induced dissociation experiments
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0003-0471-3844
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2018 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, no 7, article id 075102Article in journal (Refereed) Published
Abstract [en]

In this paper, we give a detailed description of an electrospray ion source test bench and a single-pass setup for ion fragmentation studies at the Double ElectroStatic Ion Ring ExpEriment infrastructure at Stockholm University. This arrangement allows for collision-induced dissociation experiments at the center-of-mass energies between 10 eV and 1 keV. Charged fragments are analyzed with respect to their kinetic energies (masses) by means of an electrostatic energy analyzer with a wide angular acceptance and adjustable energy resolution.

Place, publisher, year, edition, pages
2018. Vol. 89, no 7, article id 075102
National Category
Subatomic Physics Atom and Molecular Physics and Optics
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-156241DOI: 10.1063/1.5030528ISI: 000440590200049PubMedID: 30068131Scopus ID: 2-s2.0-85049646482OAI: oai:DiVA.org:su-156241DiVA, id: diva2:1205499
Funder
Swedish Research Council, 2017-00621Swedish Research Council, 2014-4501Swedish Research Council, 2015-04990Swedish Research Council, 2016-03675Swedish Research Council, 2016-04181Swedish Research Council, 2016-06625Available from: 2018-05-14 Created: 2018-05-14 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Collision- and photon-induced dynamics of complex molecular ions in the gas phase
Open this publication in new window or tab >>Collision- and photon-induced dynamics of complex molecular ions in the gas phase
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, I report experiments probing collision- and photon-induced molecular dynamics in the gas phase. Excited molecules formed in such interactions may relax by emitting electrons or photons, isomerization or fragmentation. For complex molecular systems, these processes typically occur on timescales exceeding picoseconds following statistical redistribution of the excitation energy across the internal degrees of freedom. However, energy transfer to molecules through ion/atom impact may in some cases lead to prompt atom knockout in Rutherford-type scattering processes on much faster timescales. Another example of such a non-statistical process is photon-induced excited-state proton transfer, a structural rearrangement occurring on the femtosecond timescale.

In this work, I investigate the competition between statistical and non-statistical fragmentation processes for a range of molecules colliding with He at center-of-mass energies in the sub-keV range. I show that heavy atom knockout is an important process for systems containing aromatic rings such as Polycyclic Aromatic Hydrocarbons (PAHs) or porphyrins, while statistical fragmentation processes dominate for less stable and/or smaller systems such as adenine or hydrogenated PAHs. Furthermore, I present the first measurements of the threshold energies for prompt single atom knockout from isolated molecules. The experimental results are interpreted with the aid of Molecular Dynamics (MD) simulations which allow us to extract the energy deposited into the system during a collision, knockout cross sections, fragmentation pathways and the structures of the fragments. The results presented in this work may be important for understanding the response of complex molecules to energetic processes in e.g. astrophysical environments.

Furthermore, I present the results of photodissociation and luminescence experiments probing flavin mono-anions in the gas phase. These are compared against calculations and previously measured spectra in solution. The discrepancies between the present results and the theoretical values suggest that more consideration of the vibronic structure is needed to model the photoabsorption and emission in flavins. Finally, I present the results of photoisomerisation experiments of flavin di-anions where two different isomers have been found and I discuss the proton transfer mechanisms which govern the structural changes.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2019. p. 70
Keywords
PAHs, Porphyrins, Adenine, Flavins, Biomolecules, Collisions, Experiments, Reactions, Non-Statistical Fragmentation, Molecular Dynamics, Photon-Induced Fragmentation, Luminescence, Photoisomerization, Proton Transfer
National Category
Atom and Molecular Physics and Optics
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-167001 (URN)978-91-7797-632-5 (ISBN)978-91-7797-633-2 (ISBN)
Public defence
2019-04-25, FB42, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Manuscript.

Available from: 2019-04-02 Created: 2019-03-12 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopusarXiv:1805.05075

Authority records

de Ruette, NathalieWolf, MichaelGiacomozzi, LindaAlexander, John D.Gatchell, MichaelStockett, Mark H.Zettergren, HenningSchmidt, Henning T.Cederquist, Henrik

Search in DiVA

By author/editor
de Ruette, NathalieWolf, MichaelGiacomozzi, LindaAlexander, John D.Gatchell, MichaelStockett, Mark H.Zettergren, HenningSchmidt, Henning T.Cederquist, Henrik
By organisation
Department of Physics
In the same journal
Review of Scientific Instruments
Subatomic PhysicsAtom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf