Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Tanzania Fisheries Research Institute (TAFIRI), Tanzania .
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Show others and affiliations
Number of Authors: 52018 (English)In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 8, no 9, p. 4508-4517Article in journal (Refereed) Published
Abstract [en]

The effect of repeated midday temperature stress on the photosynthetic performance and biomass production of seagrass was studied in a mesocosm setup with four common tropical species, including Thalassia hemprichii, Cymodocea serrulata, Enhalus acoroides, and Thalassodendron ciliatum. To mimic natural conditions during low tides, the plants were exposed to temperature spikes of different maximal temperatures, that is, ambient (29-33 degrees C), 34, 36, 40, and 45 degrees C, during three midday hours for seven consecutive days. At temperatures of up to 36 degrees C, all species could maintain full photosynthetic rates (measured as the electron transport rate, ETR) throughout the experiment without displaying any obvious photosynthetic stress responses (measured as declining maximal quantum yield, Fv/Fm). All species except T.ciliatum could also withstand 40 degrees C, and only at 45 degrees C did all species display significantly lower photosynthetic rates and declining Fv/Fm. Biomass estimation, however, revealed a different pattern, where significant losses of both above- and belowground seagrass biomass occurred in all species at both 40 and 45 degrees C (except for C.serrulata in the 40 degrees C treatment). Biomass losses were clearly higher in the shoots than in the belowground root-rhizome complex. The findings indicate that, although tropical seagrasses presently can cope with high midday temperature stress, a few degrees increase in maximum daily temperature could cause significant losses in seagrass biomass and productivity.

Place, publisher, year, edition, pages
2018. Vol. 8, no 9, p. 4508-4517
Keywords [en]
biomass loss, climate change, photosynthetic performance, tropical seagrass, Western Indian Ocean
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-156604DOI: 10.1002/ece3.3952ISI: 000431987300013PubMedID: 29760891OAI: oai:DiVA.org:su-156604DiVA, id: diva2:1210451
Available from: 2018-05-28 Created: 2018-05-28 Last updated: 2018-05-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
George, RushingishaGullström, MartinBjörk, Mats
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
Ecology and Evolution
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf