Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia
Show others and affiliations
Number of Authors: 82018 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 9, p. 2691-2722Article in journal (Refereed) Published
Abstract [en]

Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %). This is followed by ebullition (similar to 35 %), while summertime molecular diffusion is negligible (0.02 %) compared to the diffusion through the snow during winter (similar to 4 %). We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.

Place, publisher, year, edition, pages
2018. Vol. 15, no 9, p. 2691-2722
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-156803DOI: 10.5194/bg-15-2691-2018ISI: 000431435900007OAI: oai:DiVA.org:su-156803DiVA, id: diva2:1210822
Available from: 2018-05-29 Created: 2018-05-29 Last updated: 2018-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Kleinen, ThomasZaehle, SönkeBeer, Christian
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Biogeosciences
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf