Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RNA-sequencing reveals long-term effects of silver nanoparticles on human lung cells
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 52018 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 8, article id 6668Article in journal (Refereed) Published
Abstract [en]

Despite a considerable focus on the adverse effects of silver nanoparticles (AgNPs) in recent years, studies on the potential long-term effects of AgNPs are scarce. The aim of this study was to explore the effects of AgNPs following repeated low-dose, long-term exposure of human bronchial epithelial cells. To this end, the human BEAS-2B cell line was exposed to 1 mu g/mL AgNPs (10 nm) for 6 weeks followed by RNA-sequencing (RNA-Seq) as well as genome-wide DNA methylation analysis. The transcriptomics analysis showed that a substantial number of genes (1717) were differentially expressed following AgNP exposure whereas only marginal effects on DNA methylation were observed. Downstream analysis of the transcriptomics data identified several affected pathways including the 'fibrosis' and 'epithelial-mesenchymal transition' (EMT) pathway. Subsequently, functional validation studies were performed using AgNPs of two different sizes (10 nm and 75 nm). Both NPs increased collagen deposition, indicative of fibrosis, and induced EMT, as evidenced by an increased invasion index, anchorage independent cell growth, as well as cadherin switching. In conclusion, using a combination of RNA-Seq and functional assays, our study revealed that repeated low-dose, long-term exposure of human BEAS-2B cells to AgNPs is pro-fibrotic, induces EMT and cell transformation.

Place, publisher, year, edition, pages
2018. Vol. 8, article id 6668
Keywords [en]
Chemical biology, Lung cancer, Risk factors
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-156658DOI: 10.1038/s41598-018-25085-5ISI: 000431003200005PubMedID: 29703973OAI: oai:DiVA.org:su-156658DiVA, id: diva2:1213245
Available from: 2018-06-04 Created: 2018-06-04 Last updated: 2022-09-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Lindvall, Jessica

Search in DiVA

By author/editor
Lindvall, Jessica
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Scientific Reports
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf