Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and Physical Properties of the Oxofluoride Cu-2(SeO3)F-2
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-7156-559X
Show others and affiliations
Number of Authors: 82018 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 8, p. 4640-4648Article in journal (Refereed) Published
Abstract [en]

Single crystals of the new compound Cu-2(SeO3)F-2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) (A) over circle, b = 9.590(4) (A) over circle, and c = 5.563(3) (A) over circle. Cu-2(SeO3)F-2 is isostructural with the previously described compounds Co2TeO3F2 and CoSeO3F2. The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO3F3] octahedra, within which [SeO3] trigonal pyramids are present in voids and are connected to [CuO3F3] octahedra by corner sharing. The presence of a single local environment in both the F-19 and Se-77 solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Theta = -173(2) K and an effective magnetic moment of mu(eff) similar to 2.2 mu(B). Antiferromagnetic ordering below similar to 44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at similar to 16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at similar to 46 K and similar to 16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

Place, publisher, year, edition, pages
2018. Vol. 57, no 8, p. 4640-4648
National Category
Chemical Sciences
Research subject
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-156734DOI: 10.1021/acs.inorgchem.8b00372ISI: 000430437400048PubMedID: 29613786OAI: oai:DiVA.org:su-156734DiVA, id: diva2:1220001
Available from: 2018-06-18 Created: 2018-06-18 Last updated: 2022-02-26Bibliographically approved
In thesis
1. Design of new materials with crystal structure-related properties: The role of lone pair cations
Open this publication in new window or tab >>Design of new materials with crystal structure-related properties: The role of lone pair cations
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Non-centrosymmetry and low-dimensional arrangements, e.g. chains or layers, are very attractive structural characteristics of crystalline compounds since they are linked to some physical properties including nonlinear optical activity, ferroelectricity and magnetic frustration. The insertion of a lone-pair cation, equipped with a stereochemically active electron pair into a compound may increase its structural variety and induce the aforementioned characteristics.

In this thesis some novel oxide and oxohalide compounds are described. They contain a transition metal and also a p-element lone-pair cation. Relevant synthesis details, crystal structure and physical properties of the compounds will be presented.

Chemical systems containing iodate ions and either Cu2+ or Sc3+ have been explored in an effort to find new non-centrosymmetric compounds. The compounds contain also K+ due to its tendency to form highly coordinated asymmetric units. The new iodates are KCu(IO3)3 and the non-centrosymmetric compounds K3Sc(IO3)6 and KSc(IO3)3Cl.

Only a few oxofluoride compounds that contain lone-pair cations have been reported in the literature, mainly due to synthetic difficulties. In this work new oxofluoride compounds containing the transition metals Cu2+, Co2+, or Sc3+ and the lone pair cations Bi3+ or Se4+ have been synthesized, where the transition metal octahedra form low-dimensional arrangements in form of chains or layers. The electronegative F ̶ anions behave like O2 ̶  and bridge in between different building blocks. The new oxofluorides are Cu2SeO3F2, CoBi2O2F4 and ScBi2O3F3. The first is a framework-like compound and the latter two are layered and belong to the Aurivillius family with one perovskite like layer. The inclusion of F made it possible to broaden this Aurivillius family to contain low-oxidation state transition metals. 

The magnetic properties of the new compounds containing Cu2+ and Co2+ were characterised and the Sc3+ containing non-centrosymmetric iodates were found to show non-linear optical properties.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2020. p. 64
Keywords
Crystal structure determination, New oxohalide compounds, Lone-pair electrons, X-ray diffraction, Physical properties
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-178526 (URN)978-91-7911-012-3 (ISBN)978-91-7911-013-0 (ISBN)
Public defence
2020-03-25, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Accepted.

Available from: 2020-03-02 Created: 2020-02-10 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Mitoudi-Vagourdi, EleniPapawassiliou, WassiliosJaworski, AleksanderPell, Andrew J.Johnsson, Mats

Search in DiVA

By author/editor
Mitoudi-Vagourdi, EleniPapawassiliou, WassiliosJaworski, AleksanderPell, Andrew J.Johnsson, Mats
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf