Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting global scale exposure of humans to PCB 153 from historical emissions
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0001-9159-6652
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0003-2562-7339
Number of Authors: 42018 (English)In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 20, no 5, p. 747-756Article in journal (Refereed) Published
Abstract [en]

Predicting human exposure to an environmental contaminant based on its emissions is one of the great challenges of environmental chemistry. It has been done successfully on a local or regional scale for some persistent organic pollutants. Here we assess whether it can be done at a global scale, using PCB 153 as a test chemical. The global multimedia fate model BETR Global and the human exposure model ACC-HUMAN were employed to predict the concentration of PCB 153 in human milk for 56 countries around the world from a global historical emissions scenario. The modeled concentrations were compared with measurements in pooled human milk samples from the UNEP/WHO Global Monitoring Plan. The modeled and measured concentrations were highly correlated (r = 0.76, p < 0.0001), and the concentrations were predicted within a factor of 4 for 49 of 78 observations. Modeled concentrations of PCB 153 in human milk were higher than measurements for some European countries, which may reflect weaknesses in the assumptions made for food sourcing and an underestimation of the rate of decrease of concentrations in air during the last decades. Conversely, modeled concentrations were lower than measurements in West African countries, and more work is needed to characterize exposure vectors in this region.

Place, publisher, year, edition, pages
2018. Vol. 20, no 5, p. 747-756
National Category
Chemical Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-157768DOI: 10.1039/c8em00023aISI: 000433191900003PubMedID: 29553155OAI: oai:DiVA.org:su-157768DiVA, id: diva2:1223321
Available from: 2018-06-25 Created: 2018-06-25 Last updated: 2018-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
McLachlan, Michael S.Undeman, EmmaZhao, FangyuanMacLeod, Matthew
By organisation
Department of Environmental Science and Analytical ChemistryStockholm University Baltic Sea Centre
In the same journal
Environmental Science: Processes & Impacts
Chemical SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf