Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs
Show others and affiliations
Number of Authors: 62018 (English)In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 47, no 22, p. 7594-7601Article in journal (Refereed) Published
Abstract [en]

Three metal-organic framework (MOF) compounds, Ln(0.6) Gd-0.(6) {C6H (COO)(3)); Ln = Eu, Tb, and Dy with a MIL-78 structure, have been synthesized by a solvent-free mechanochemical method from stoichiometric mixtures of benzene 1,3,5-tricarboxylic acid, C6H3 (COOH)(3), also known as trimesic acid, and the respective lanthanide carbonates, Ln(2)(CO3)(3)center dot xH(2)O, Ln = Eu, Gd, Tb and Dy. MIL-78 (Ln(0.5)Gd(0.)(6)) shows the characteristic red, green, and yellow luminescence of Eu3+, Tb3+, and Dy3+, respectively. Efficient intramolecular energy transfer from the ligand triplet state to the excited states of Ln(3+) ions can be observed. The lifetimes and quantum yields of these compounds are studied and discussed in detail. Among the three compounds, the Tb3+ containing compound shows the longest lifetime and highest quantum yield due to a smaller contribution from non-radiative decay pathways and better matching of the lowest triplet energy level of the benzenetricarboxylate ligand and the resonance level of Tb3+.

Place, publisher, year, edition, pages
2018. Vol. 47, no 22, p. 7594-7601
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-157647DOI: 10.1039/c7dt04771aISI: 000434313900028PubMedID: 29790496OAI: oai:DiVA.org:su-157647DiVA, id: diva2:1223511
Available from: 2018-06-25 Created: 2018-06-25 Last updated: 2018-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Alammar, TarekMudring, Anja-Verena
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Dalton Transactions
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf