Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lattice models with exactly solvable topological hinge and corner states
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Number of Authors: 32018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 24, article id 241405Article in journal (Refereed) Published
Abstract [en]

We devise a generic recipe for constructing D-dimensional lattice models whose d-dimensional boundary states, located on surfaces, hinges, corners, and so forth, can be obtained exactly. The solvability is rooted in the underlying lattice structure and as such does not depend on fine tuning, allowing us to track their evolution throughout various phases and across phase transitions. Most saliently, our models provide boundary solvable examples of the recently introduced higher-order topological phases. We apply our general approach to breathing and anisotropic kagome and pyrochlore lattices for which we obtain exact corner eigenstates, and to periodically driven two-dimensional models as well as to three-dimensional lattices where we present exact solutions corresponding to one-dimensional chiral states at the hinges of the lattice. We relate the higher-order topological nature of these models to reflection symmetries in combination with their provenance from lower-dimensional conventional topological phases.

Place, publisher, year, edition, pages
2018. Vol. 97, no 24, article id 241405
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-157648DOI: 10.1103/PhysRevB.97.241405ISI: 000434762500002OAI: oai:DiVA.org:su-157648DiVA, id: diva2:1223523
Available from: 2018-06-25 Created: 2018-06-25 Last updated: 2018-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Kunst, Flore K.Bergholtz, Emil J.
By organisation
Department of Physics
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf