Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS
Show others and affiliations
Number of Authors: 1942018 (English)In: Publications of the Astronomical Society of Japan, ISSN 0004-6264, E-ISSN 2053-051X, Vol. 70, no 2, article id 10Article in journal (Refereed) Published
Abstract [en]

Thanks to its high spectral resolution (similar to 5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV He alpha line (w)-the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of similar to 1.3 in the inner similar to 30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, He beta, Ly alpha) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.

Place, publisher, year, edition, pages
2018. Vol. 70, no 2, article id 10
Keywords [en]
galaxies: clusters: individual (Perseus Cluster), galaxies: clusters: intracluster medium, X-rays: galaxies: clusters
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-157834DOI: 10.1093/pasj/psx127ISI: 000432287600002Scopus ID: 2-s2.0-85071364535OAI: oai:DiVA.org:su-157834DiVA, id: diva2:1227855
Available from: 2018-06-27 Created: 2018-06-27 Last updated: 2022-10-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Axelsson, Magnusde Plaa, JelleEnoto, TeruakiHagino, KouichiYamasaki, Noriko Y.

Search in DiVA

By author/editor
Axelsson, Magnusde Plaa, JelleEnoto, TeruakiHagino, KouichiYamasaki, Noriko Y.
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Publications of the Astronomical Society of Japan
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf