Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of the cross section for isolated-photon plus jet production in pp collisions at root s=13 TeV using the ATLAS detector
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 29042018 (English)In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 780, p. 578-602Article in journal (Refereed) Published
Abstract [en]

The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb(-1). Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-k(t) algorithm with radius parameter R = 0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.

Place, publisher, year, edition, pages
2018. Vol. 780, p. 578-602
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-158195DOI: 10.1016/j.physletb.2018.03.035ISI: 000432187800079OAI: oai:DiVA.org:su-158195DiVA, id: diva2:1234207
Available from: 2018-07-23 Created: 2018-07-23 Last updated: 2018-07-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Abulaiti, YimingÅkerstedt, HenrikBertoli, GabrieleBessidskaia Bylund, OlgaBohm, ChristianCarney, Rebecca M. D.Clément, ChristopheCribbs, Wayne A.Gellerstedt, KarlHellman, StenJon-And, KerstinLundberg, OlofMilstead, David A.Moa, TorbjörnMolander, SimonShaikh, Nabila W.Shcherbakova, AnnaSilverstein, Samuel B.Sjölin, JörgenStrandberg, SaraUghetto, MichaëlValdes Santurio, EduardoWallängen, Veronica
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physics Letters B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf